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Abstract 

In this work a novel approach to deal with the noise issue in 
both the auto-tuning procedure and the control performance 
for a PID-type fuzzy logic controller in a multi-sensor 
environment is proposed. This approach combines a low-
order modelling method with a fuzzy logic-based adaptive 
decentralised Kalman filtering approach. The proposed 
methodology is tested in several simulated benchmark 
processes. Good results are obtained. 

1 Introduction 

In this paper a combination of three recently developed 
approaches: 1) the low-order modelling method proposed by 
Wang et al [7], 2) the modified hybrid PID-type fuzzy logic 
controller developed by Escamilla and Mort [4], and the fuzzy 
logic-based adaptive decentralised Kalman filter, also 
proposed by Escamilla and Mort [5], is proposed to deal with 
the noise issue in both the auto-tuning procedure and the 
control performance of a PID-type fuzzy logic controller in a 
multi-sensor environment. It is assumed that multiple sensors, 
which may have different accuracy levels (different 
measurement noise amplitudes), are used to determine the 
process output. The idea of using multiple sensors and fusion 
is to have a reliable control that can operate at good accuracy 
levels even in the occurrence of sensor failures. 
 
Therefore, in the remaining of this paper, first in section 2 the 
general structure for system identification and control 
designing is explained. Then, the different functional blocks 
are described. After that, in section 3 several examples are 
presented to illustrate the effectiveness of the proposed 
approach. Finally, in section 4 conclusions to this work are 
given. 

2 General system identification and control 
structure 

The general system identification and control structure 
proposed in this work is shown in figure 1. This structure 

consists of several functional blocks. A biased relay feedback 
experiment is used to find the process critical point 
information and the steady-state gain. A noise amplitude 
analyser and signal selector is used to estimate the noise 
bands and the noise covariance in each sensor. Also, this 
block selects the signal with the least noise band to perform 
with it a biased relay experiment. The data obtained from this 
experiment is used by a model identifier to approximate the 
process transfer function as a first order plus dead-time. The 
obtained transfer function is transformed to its discrete state-
space representation. This state-space model is used by N 
fuzzy logic-based adaptive Kalman filters (FL-AKFs) 
configured in a fuzzy logic-based adaptive decentralised 
Kalman filter (FL-ADKF). The FL-ADKF fuses and filters all 
the noisy measurements signals. The fused estimated process 
output ŷ  is used as measurement signal to compare with it 

the reference signal and calculate the error signal. The error 
signal is fed to a controller referred to as modified hybrid PID 
fuzzy logic controller (MHPID-FLC). In the next sections, 
each one of the functional blocks in figure 1 are briefly 
explained. 
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Figure 1: General system identification and control structure. 
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2.1 Model identifier and translator to state-space 
representation 

A large number of processes can be characterised by the first-
order plus dead-time model [6]: 
 

1+
=

−

Ts

Ke
sG

Ls

)(        (1). 

 
For these kinds of processes Wang et al [7] have recently 
proposed a biased relay feedback test from which the critical 
point and the static gain can simultaneously be obtained. By 
applying the biased relay feedback, shown in figure 2(a), to a 
process of the kind (1), the obtained process input u and the 
process output y are shown in figure 2(b). For these processes 
the output y converges to the stationary oscillation in one 
period )( 21 uu TT + , and the oscillation is characterised by: 
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Figure 2: (a) biased relay, (b) waveforms under a biased relay 
feedback. 
 
The above four equations are the accurate expressions for the 
period and the amplitude of the limit cycle oscillation of the 
first order plus dead-time process. Therefore, by measuring 
any three of Au, Ad, 1uT , and 2uT , the parameters of the model 

K, T and L can be calculated from (2) to (5). Solving these 
equations is a tedious task. However, the calculations can be 
simplified if K is obtained by an alternative procedure. This 
procedure consists in calculating K as the ratio of DC 
components in the output and input: 
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Having available the value of K, the normalised dead-time of 
the process Θ=L/T can be obtained from (2) as: 
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It then follows from (4) that: 
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Finally, the dead time is calculated as: 
 

Θ= TL         (9). 
 
If the process to be identified is of the form (1) and there is no 
measurement noise, then the parameters obtained with the 
biased relay method gives an almost exact identification of 
the process parameters. Furthermore, because in practice 
many high-order processes can be well approximated by first-
order plus dead-time models, the biased relay method can also 
be used to model processes of higher order [7]. Therefore, this 
low-order modelling is accurate enough for PID control 
design in most cases. 
 
The above method still gives good results for the case where 
there is noise in the measurements. However, in that case, the 
parameters K, Au, and Ad have to be calculated by averaging 
over those values obtained over several cycles. It is 
recommended to average over eight cycles of stationary 
oscillations [7]. 
 
Therefore, once the biased relay experiment is carried out, an 
approximated model of the process is available as a first-order 
transfer function. In order to use this model in the FL-AKFs 
(see figure 1) it is necessary to translate it to its state-space 
representation. This is performed in two stages. First, the 
transfer function in continuous time is transformed to its 
corresponding state-space representation. Second, having 
available the continuous state-space representation, this is 
translated to its corresponding discrete form. Thus, having 
available the process model in its discrete state-space 
representation, this model can be used by the FL-ADKF to 
perform multi-sensor data fusion (MSDF). 

2.2 Noise amplitude analyser and signal selector 

The noise amplitude analyser and signal selector performs 
several tasks. First, it determines the noise bands in each 
sensor. The noise band can be estimated by measuring the 
peak-to-peak amplitude of the output signal when the process 
is in steady-state [1]. Second, an estimation of the 
measurement noise covariance value, Ri, of each sensor is 
performed over the data collected during a certain period of 
time. Finally, the signal with the minimum noise band is 
selected as the output signal of this block. 

2.3 Fuzzy logic-based adaptive decentralised Kalman 
filter 

In the standard decentralised Kalman filter (SDKF) algorithm 
the information is processed in two stages. In the firs stage, N 
local standard Kalman filters (SKFs) process their own data 
in parallel to yield the best possible local estimates. In the 
second stage, a master filter fuses the local estimates, yielding 
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the best global estimate [2]. The structure of the FL-ADKF is 
similar to that of the SDKF, but instead of having N local 
SKFs there are considered N local FL-AKFs working in 
parallel [5]. The adaptation in each FL-AKF is in the sense of 
dynamically tuning the measurement noise covariance matrix 
R or the process noise covariance matrix Q employing a fuzzy 
inference system (FIS) based on a covariance matching 
technique. For a matter of space the complete description of 
the FL-AKF cannot be presented here. The reader interested 
is referred to [3, 5]. 

2.4 The modified hybrid PID-type fuzzy logic controller 

The structure of the modified hybrid PID-type fuzzy logic 
controller (from here referred to as MHPID-FLC) is presented 
in figure 3(a). The fuzzy control system (FCS) inside the 
MHPID-FLC structure consists of four fuzzy rules: 
 
R1: If E is N and CE is N then u = p1*E + q1*CE + r1  
R2: If E is N and CE is P then u = p2*E + q2*CE + r2  
R3: If E is P and CE is N then u = p3*E + q3*CE + r3  
R4: If E is P and CE is P then u = p4*E + q4*CE + r4  

 
where the coefficient constants pi = qi = 1, and r i = 0; for i = 
1, 2, 3, 4. The linguistic labels for the fuzzy sets mean P = 
Positive and N = Negative, they are shown in figure 3(b). 
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Figure 3: (a) MHPID-FLC structure, (b) Fuzzy sets. 
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Table 1: Relationship between the scaling factors of the 
MHPID-FLC, the traditional PID control gains, and the 
Ziegler Nichols frequency response tuning formulae. 
 
The control output of the MHPID-FLC is equivalent to its 
traditional counterpart with β = 0.5 [4]: 
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The scaling factors of the MHPID-FLC can be calculated 
from the traditional PID gains or from the ultimate gain and 
the ultimate frequency obtained from a relay experiment [4]. 
Table 1 gives the formulae for these calculations. 

2.5 Identification and auto-tuning procedure using 
multiple noisy sensors 

Therefore, from the previous sections and referring to figure 
1, the proposed identification and auto-tuning procedure is 
summarised as follows: 
 
1. SW1 is in position 1; SW2 is in position 1. First, in the 

“listening period”, 0-12 sec, the noise bands and the 
measurement noise covariance in each sensor are 
estimated. The sensor signal with the smallest noise band 
is selected to be feedback to the biased relay. 

2. SW1 switches to position 2 and a biased relay is applied 
at time t = 12 sec. 

3. Data is registered over five cycles of stationary 
oscillations. By averaging the values obtained over these 
five cycles, the parameters K, Au, and Ad are calculated 
and the values of Tu1 and Tu2 are measured over the fifth 
cycle. With these parameters, the value of the normalised 
process Θ is calculated using (7). Similarly, T is 
calculated from (8). Then, the dead time L is calculated 
from (9) and the process transfer function is modelled as 
a first-order plus dead-time. The obtained transfer 
function is transformed to its corresponding continuous 
and discrete state-space representations. 

4. At the end of the fifth cycle all the FL-AKFs are 
activated using the state-space representation of the plant 
and MSDF is performed using the FL-ADKF; then the 
fused output is used as process output, SW2 is switched 
to position 2. The initial conditions for the FL-AKFs are 
defined as xi(0) = 0, )(ˆ 0ix = 0, i= 1,2,…,N. Because an 

estimation of the measurement noise covariance value Ri 
for each sensor has been obtained in step 1, these values 
are used in the corresponding FL-AKFs. Therefore, while 
the covariance values Ri are assumed to be known, they 
are not adapted in the FL-AKFs. Instead, the unknown 
values of the process noise covariance matrices Qi, which 
represent the uncertainty in the process model, are the 
ones that are adaptively adjusted in the FL-AKFs. This 
will compensate for the modelling errors, recalling that 
the model used is an approximated model. 

5. During the sixth cycle, the ultimate gain and the ultimate 
frequency are calculated as: 
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where µ is the value of the relay amplitude when the bias 
is taken out. 

6. With Ku and Tu available, the scaling factors of the 
MHPID-FLC are calculated using the formulae given in 
Table 1. 

7. Finally, at the end of oscillation 6, SW1 is switched to 
position 3 and the loop MHPID-FLC – process is closed. 
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Afterwards, the performance of the controller can be 
investigated by introducing a set-point change and a load-
disturbance at particular time steps. In order to test the 
effectiveness of the proposed approach, three examples are 
presented in the next section. 
 

3 Illustrative examples 

The viability of the previously described approach is 
demonstrated by simulating three processes taken from [7]. 
The experiments were developed under the Matlab/Simulink 
simulation environment. It is assumed that there are two 
sensors in the scheme shown in figure 1. The measurement 
noise in each sensor, for all the experiments, is defined as a 
Gaussian zero-mean white noise sequence with variances 
0.008 and 0.033 for v1 and v2, respectively. 
 
The FCS inside the MHPID-FLC works with normalised 
inputs, in the range [-1, 1]. This normalisation is carried out 
by dividing the inputs between the maximum range of 
variation of the error signal, which in this case is assumed to 
be [-10, 10]. Therefore, the normalisation factor is (1/10) 
applied to both inputs, e and –y. Obviously, the controller 
output needs to be denormalised; hence, the controller output 
is multiplied by a denormalisation factor, 10 in this case. 
 
The processes studied and the corresponding parameters 
obtained from the biased relay experiment are listed in Table 
2. The scaling factors of the MHPID-FLC obtained from the 
auto-tuning procedure for each process are shown in Table 3. 
In order to analyse the set-point and load-disturbance 
responses, a step change of 10 units and a load disturbance, 
also of 10 units, are applied at appropriate time steps. The set-
point and load-disturbance responses under MHPID-FLC for 
the plant in examples 1, 2 and 3 are shown in figures 4(a), 
5(a), and 6(a), respectively. From these figures it can be noted 
that slightly sluggish set-point and load-disturbance responses 
are obtained. This is more noticeable in examples 2 and 3. 
However, the control performance can be further improved by 
modifying the value of the consequent parameters, p, q and r, 
in the fuzzy rules of the FCS inside the MHPID-FLC 
structure. Therefore, to improve the control performance, the 
consequent parameters are modified as is indicated in table 4. 
The improved set-point and load-disturbance responses under 
MHPID-FLC for the plants in examples 1, 2 and 3 are shown 
in figures 4(b), 5(b), and 6(b), respectively. Note that the 
scaling factors found in the auto-tuning procedure are left 
unchanged. 
 
Note in figures 4 to 6 that as the order of the process 
increases, less noise is filtered by the FL-ADKF. In other 
words, this means that a quite accurate model is obtained 
when the plant is effectively of first-order. However, if the 
order of the plant increases, then the accuracy of the 
approximated model decreases. As a result, the value of the 
process noise covariance Q, which is adaptively adjusted, is 
increased to take into account this increased modelling error. 
This can be appreciated in figure 7, where the values of R1(t) 

and Q1(t) in the FL-AKF 1, fed by sensor 1, are plotted for 
each one of the examples. Remember that R and Q control the 
bandwidth of the filter. Thus, while R is maintained constant, 
Q is constantly changing increasing or decreasing the 
bandwidth of the filter and, in consequence, increasing or 
reducing the filtering action. 
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2.95          3.35      2.106      -1.672 

 
1.215     1.592      1.892 

  
Table 2: Estimated parameters from biased relay experiment. 
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1             1 .575      0 .2568       0 .4045  

 
  
Table 3: Scaling factors obtained from the auto-tuning 
procedure. 
 

 

  Example Process Consequent parameters 
Rule      p        q        r 

Modified cons. parameters 
   Rule      p        q        r 
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   1          1          1        0 
   2          1          1        0 
   3          1          1        0 
   4          1          1        0 

      1        1.8        0.3      0 
      2        0.4        0.4      0 
      3        0.4        0.4      0 
      4        1.8        0.3      0 
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   1          1          1        0 
   2          1          1        0 
   3          1          1        0 
   4          1          1        0 

      1        2.3        0.5      0 
      2        0.4        0.4      0 
      3        0.4        0.4      0 
      4        2.3        0.5      0 
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   1          1          1        0 
   2          1          1        0 
   3          1          1        0 
   4          1          1        0 

      1        2.5        0.2      0 
      2        0.1        0.1      0 
      3        0.1        0.1      0 
      4        2.5        0.2      0 

  
Table 4: Modified consequent parameters. 
 

 
Figure 4: Set-point and load-disturbance responses for the 
plant in example 1, (a) with original consequent parameters, 
(b) with modified consequent parameters. 

(a) (b) 
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Figure 5: Set-point and load-disturbance responses for the 
plant in example 2, (a) with original consequent parameters, 
(b) with modified consequent parameters. 
 

 
 
Figure 6: Set-point and load-disturbance responses for the 
plant in example 3, (a) with original consequent parameters, 
(b) with modified consequent parameters. 
 
Therefore, from the results obtained in the simulated 
examples, it was demonstrated that the described auto-tuning 
procedure is effective when there are multiple noisy sensors 
measuring the process output. Good results of MSDF and 
signal filtering also were obtained. 

4 Conclusions 

In this paper a novel approach to deal with the noise issue in 
both the auto-tuning procedure and the control performance 
for a MHPID-FLC, in a multi-sensor environment has been 
proposed. This approach combines a low-order modelling 
method with the FL-ADKF approach. The proposed 
methodology was tested in several simulated benchmark 
processes. Good results were obtained. 
 

 

 

 
Figure 7: (a) Values of R1(t) and Q1(t) in the FL-AKF 1, fed 
by sensor 1, example 1; (b) Values of R1(t) and Q1(t) in the 
FL-AKF 1, fed by sensor 1, example 2; (c) Values of R1(t) 
and Q1(t) in the FL-AKF 1, fed by sensor 1, example 3. 
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