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Abstract 
In this work a novel two-term parameter adaptive fuzzy 
logic controller structure is proposed. This new structure 
is especially suitable for delay compensation. The idea 
explored here is the variation with time of the integral 
component of a Fuzzy Control System (FCS) structured 
as PI type (FZ-PI). If it is detected that a delay is present 
in the system, then the integral gain can be reduced 
gradually in order to increase the damping of the system 
and increase the system stability. At the same time the 
proportional factor of the FZ-PI is increased in order to 
maintain quick response against any error. The effect of 
these two actions is to compensate the time delays 
present in the process. Another one-input-one-output 
FCS is used to monitor the output process and adjust on-
line the parameter which is used to increase or decrease 
the proportional and integral gains. This adjustment is 
done in accordance with the magnitude of the time 
delay present in the process. The effectiveness of this 
approach is shown in one benchmark process taken 
from the literature. 
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1. Introduction 
It can be said that almost any industrial process has 
inherent time delays (dead times). Delays often occur 
due to the presence of transport lags, recycling loops, or 
the dead time associated with compensation analysis [Li 
and Tso, 1999]. Delays will deteriorate the performance 
of the control system and may cause instability, e.g. 
oscillations around the set point. Extensive research has 
been carried out in conventional control to find 
solutions to this problem [Horowitz, 1983; Leva et al, 
1994]. However, few studies have been reported to treat 
the problem of delays in the context of fuzzy control [Li 
and Tso, 1999; Escamilla, 1999]. 
 
     In a two-term fuzzy control system (FCS) [Driankov 
et al, 1993; Li and Gatland, 1996], the rules take into 

account the error and its rate of change to obtain the 
control input to the process. However, these rules not 
take into account the effects that this input has on the 
process output. Additionally if the process has inherent 
delays it is harder to achieve good control using these 
types of controllers. Under these circumstances it is 
necessary that the controller takes action after it detects 
if a correction was made or not. In their early work, 
King and Mamdani [1977] suggested two alternatives to 
try to solve this problem. First, increase the number of 
rules in order to take into account the dead times 
involved in the process. Second, construct a predictive 
fuzzy model in order to predict the future state of the 
process and use this to make the control decisions. The 
objective of both alternatives is to diminish the effect of 
the delays present in the process, that is, to fit the 
controller to the process dynamics. 
 
     The first alternative mentioned above can be 
implemented by introducing into the controller certain 
elements which indicate how the process has evolved as 
a result of the applied control actions in addition to the 
current state of the error and its rate of change. This can 
be done using a FCS structured as PID [Driankov, 
1993]. Obviously this increases the number of variables 
and the number of rules in an exponential way. At the 
same time, the computational effort to implement the 
controller is increased too. 
 
     An idea explored recently is the utilisation of a delay 
compensation factor added to the control loop [Li and 
Gatland, 1999]. However, in this case it is assumed that 
the delay is reasonably small and known. The delay 
compensation factor is approximated by a first-order 
polynomial. This reduces the applicability of this 
approach. 
 
     In this work a novel structure of a two-term FCS that 
deals with the problem of delays is presented. This 
structure takes into account the evolution of the process 
not only from the current error and its change but also 
from the effects of the previous control actions. The 
idea explored here is the variation with time of the 



integral component of a FCS structured as PI type (FZ-
PI). If it is detected that a delay is present in the system, 
then the integral gain can be reduced gradually in order 
to increase the damping of the system and increase the 
system stability. At the same time the proportional 
factor of the FZ-PI is increased in order to maintain 
quick response against any error. Another one-input-
one-output FCS is used to monitor the output process 
and adjust on-line the parameter which is used to 
increase or decrease the proportional and integral gains. 
The results obtained from a simulation example shows 
the effectiveness of this approach for several time delay 
magnitudes. 
 

This work is presented in the following way. In 
Section 2 a review of two-term FCS is given. The new 
two-term FCS structure is described in Section 3, and a 
simulation example is presented in Section 4. Finally, 
discussions and conclusions are given in the final 
section. 
 
 
2. Two-term fuzzy logic controllers 
In traditional control the PI control algorithms is 
expressed as: 
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and the PD control algorithm is expressed as: 
 

eKeKu DpPD �+=  
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where e  is the error signal (set point � process output), 

e�  is the time derivative of the error, 
Ipi KKT = , 

and 
pDd KKT = . The gains Kp, KI and KD are called 

the proportional gain, integral gain and derivative gain. 
The parameters Ti and Td are known as the integral time 
and the derivative time respectively. 
 
     In fuzzy control there are the analogous FCS 
structured as PD type (FZ-PD) and PI type (FZ-PI) 
[Driankov et al, 1993; Li and Gatland, 1996]. Their 
basic structures for continuous time are shown in Fig. 
1., and the structures for discrete time are shown in Fig. 
2. Inside these structures a FCS develops the well 
known three processes of fuzzification, rule evaluation 
and defuzzification [Lee, 1990; Driankov et al, 1993]. If 
the sum-product compositional rule of inference 

[Kosko, 1992] is used in the process of rule evaluation, 
and singletons are employed as conclusions of each 
rule, then a graphical representation of these processes 
can be constructed as shown in Fig. 3. From this 
representation it is deduced that the output of the FCS is 
given as: 
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Fig. 1. Structure of fuzzy two-term controllers 
(continuous-time). 
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where Uk = crisp control action (global centre of area); 
wi = degree of activation of the rule i; Si = singleton as 
conclusion of the rule i. i = 1, 2,..., n. n = number of rules 
activated in the rule evaluation process; k denotes the 
instant of time. 
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Fig. 2. Structure of fuzzy two-term controllers (discrete-
time). 
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Fig. 3. Graphical representation of the three processes 
of a FCS. 
 
     In the next section it is shown how Eq. 3 can be 
simplified under certain considerations and how a FZ-PI 
can be equivalent to its traditional counterpart. After 
this analysis the formulation of the new two-term 
parameter adaptive FCS structure is explained. 
 
 
3. Proposed new structure for two-term 
fuzzy logic controllers 
In order to derive the new structure, first an analysis of 
the FZ-PI structure is given. For this analysis the 
following assumptions are made: 
 
1. The membership functions of the input variables to 

the FCS are triangular complementary adjacent 
fuzzy sets [Escamilla, 1999]. 

2. The membership functions of the output of the FCS 
are singletons determined by the sum of the peak 
positions of the input sets. 

3. The sum-product compositional rule of inference 
[Kosko, 1992] is used in the stage of rule 
evaluation. 

4. The centre of area method is used in the 
defuzzification process. 

 
     If all the above are met, then the FCS is simplified as 
shown in Fig. 4. This is because the denominator of Eq. 
3 is always equal to 1 [Yamakawa, 1992; Gravel and 
Mackenberg, 1995]. Additionally Jentzen [1999] has 
shown that the FZ-PI type structure, under the 
considerations mentioned above, is equivalent to its 
traditional counterpart. This point is explained next 
because, from its analysis, the new structure is derived. 
 
     The control output uPI of the discrete-time FZ-PI 
type (see Fig. 2) is the sum of all previous increments,  
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Fig. 4. Graphical representation of the simplified FCS. 
 
     As can be observed in Eq. 4 the FZ-PI controller 
works like a traditional PI controller. The equivalent 
proportional and integral components are, 
 

GCEGCUK p *=        (5) 
 

GEGCUK I *=         (6) 

 
     The integration component of the FZ-PI controller 
has an important effect on the performance of the fuzzy 
controller. If the integration component is too weak, 
then the response is slow, and if the integration 
component is too strong, then the system will become 
unstable [Quiao and Mizumoto, 1996]. If there is delay 
in the process then the information taken by the FCS 
arrives later and hence a delayed control action is 
generated. The importance of the integration component 
grows in this case. From control experience it is known 
that delays are one of the main causes of oscillations 
[King and Mamdani, 1977]. 
 
     At this point there are two facts, first, delays cause 
instability in the form of oscillations. Second, a very 
strong integration component will contribute to the 
instability. From here we developed the idea of having 
an integration component that can vary with time in 
order to compensate the delay effects and, in this way, 
increase the stability of the system. 
 
     The mechanism of putting a time varying integration 
component into practice is to introduce a varying 
integration gain. If there is no delay in the system then 
the integration gain is not affected and remains constant. 
But, if there is a delay in the system then the integration 
gain is gradually reduced with time in order to increase 
the damping of the system and increase the stability. 
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Fig. 5. General structure of the Parameter Adaptive FZ-PI type controller (PAFZ-PI). 

 
 
     From Eq. 6 it can be seen that changing the gain 
GCU also modifies the integration gain, according to: 
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where β  is the factor that is increased with time in order 
to reduce the integration component. From Eq. 5 it is 
seen that GCU is included in the proportional gain. 
Because of this, a decrement in the integral component 
will decrease the proportional component and will 
reduce the reaction of the FZ-PI type controller against 
the error. This problem is solved if, while decreasing the 
integral gain, the proportional gain is increased at the 
same rate, 
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in this way the proportional control strength will remain 
unchanged and the system can always respond quickly 
to errors. Finally, the control output uPI is: 
 

�
=

��
�

�
��
�

�

+��
�

�
��
�

�
=

k

i
i

kPI

eGEGCU

eGCEGCUu

1

**
1

*

***
1

*

β

β
β

 

β
β 1

******
1

�
�

�
�
�

� += �
=

k

i
ik eGEGCUeGCEGCU  

             �(9). 
 
     Thus the general structure of the Parameter Adaptive 
FZ-PI type controller (PAFZ-PI) is shown in Fig. 5. 
This structure takes into account the evolution of the 
process not only from the current error and its change 
but also from the effects of the previous control actions. 

This is achieved due to the location in the structure of 
the factor β and the way in which it is adjusted. 
 
     The idea explored in the mechanism of adjustment of 
β is the fact that delays generally affect the process in 
such a way that the oscillation around the set point is 
increased [King and Mamdani, 1977; Li and Tso, 1999]. 
Thus a one-input-one-output FCS is used to monitor the 
rate of change in the process output, 
 

1−−= ii yycy          (10a) 
 

cyGCYCY *=         (10b). 

 
     High rate means large delay and then a big change in 
β is needed. Small or null rate means small or null 
delay, then the change on β is small or null. The 
structure of the block used to adjust β is shown in Fig. 
6. As can be observed, the output of this block is given 
by, 
 

ββ ck += 1          (11) 

 
where cβ is the output of the FLC. In this way β is 
continuously adjusted on-line in accordance with a non-
linear function (the output of the FCS) of CY. 
 
     In next section the effectiveness of this approach is 
shown by a simulated example. 
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Fig. 6. Block Adjust β used to adjust the parameter β. 
 



4. Simulation example 
In order to test the proposed PAFZ-PI structure, a 
system with oscillatory modes, taken from Janzen 
[1999], was simulated with a varying time delay 
introduced in the system. The simulation environment is 
Matlab (v. 5.3.1.29215a) for Windows together with 
Simulink (v. 3.0.1) and the Fuzzy Logic Toolbox (v. 
2.0.1) for use with Matlab. The plant transfer function is 
given by: 
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     The simulation is used to illustrate the robustness of 
the new PAFZ-PI structure against variations of the time 
delay. The time delay T varies between 0 and 3 sec. The 
simulation is carried out in the following sequence: 
 
1. Tuning of the FZ-PI and the PAFZ-PI for the plant 

without time delay. 
2. Adjust the gain GCY in the PAFZ-PI for the plant 

with a time delay of 3s. Fix this gain in that value. 
3. Performance comparison of the conventional FZ-PI 

and the PAFZ-PI for the plant with a time delay of 
0s, 1s, 2s, and 3s. 

4. Performance comparison of the conventional FZ-PI 
and the PAFZ-PI for the plant with a varying time 
delay from 0 to 3s. 

 
     The membership functions of the FCS inputs E and 
CE, and the FCS output cu are shown in Fig. 7. The rule 
base used is given in Table 1. Fig. 8 shows the control 
surface, as can be observed, the FCS output is 
determined by the sum of the peak positions of the input 
sets. 
 
     Fig. 9 shows the membership functions for CY in 
block Adjust β. The rules used by the FCS in this 
block are: 
 
1. If CY is ZERO then cβ is 0 
2. If CY is NOTZERO then cβ is 1. 
 

Table 1 
E\CE NB NS ZE PS PB 
NB NVB NB NM NS ZE 
NS NB NM NS ZE PS 
ZE NM NS ZE PS PM 
PS NS ZE PS PM PB 
PB ZE PS PM PB PVB 

 
The max-prod compositional rule of inferences and the 
centre of area defuzzification method are employed in 
block Adjust β. 

 

Fig. 7. Membership functions for the FCS inputs E and 
CE, and the FCS output cu. 
 

 
Fig. 8. Control surface. 

 

 
Fig. 9. Membership functions for CY. 

 
     The quantitative criteria for measuring the 
performance of both structures, traditional FZ-PI and 
PAFZ-PI, is the integral of absolute error (IAE) which is 
calculated as: 
 

dteIAE �=          (13). 



     For the point 3 mentioned above the system was 
simulated for 300 sec. with a sample time of 0.2 sec. 
The tuned gains and the IAE obtained for the 
conventional FZ-PI and the PAFZ-PI for each case are 
shown in Table 2. Satisfactory performance is obtained 
in all cases. 
 
For point 4 the system was simulated for 900 sec with a 
sample time of 0.2 sec. The tuned gains for the 
conventional FZ-PI and the PAFZ-PI are the same 
shown in Table 2. The process responses for both 
traditional FZ-PI and PAFZ-PI are shown in Fig. 10. 
Observe how the new structure is more robust against 

different magnitudes of time delays. The adjustment of 
the parameter β for this case is shown in Fig. 11. 
 

Table 2
Actual
delay GE GCE GCU

GCY
PAFZ-PI

IAE
FZ-PI

IAE
PAFZ-PI

T = 0 1 50 3.35E-3 10 12.97 14.75

T = 1 1 50 3.35E-3 10 15.75 14.60

T = 2 1 50 3.35E-3 10 28.35 16.27

T = 3 1 50 3.35E-3 10 256.92 28.73

 

 
 

 
Fig. 10. Process responses of the PAFZ-PI and the traditional FZ-PI. 

 

 
Fig. 11. Adjustment of the parameter β. 

 
 



5. Conclusions 
In this work a new two-term Parameter Adaptive FZ-PI 
type controller (PAFZ-PI) structure has been presented. 
This structure has the capability of compensating for 
time delays present in the process being controlled. The 
basic idea behind the compensation is the automatic 
variation with time of the integral gain. If it is detected 
that a delay is present in the system, then the integral 
gain is reduced through an adjusting factor in order to 
increase the damping of the system and increase the 
system stability. At the same time the adjusting factor 
affects the proportional factor of the PAFZ-PI in order 
to maintain quick response against any error. Due to the 
strategic location of the adjusting factor in the PAFZ-PI 
structure and the way in which it is adjusted, this 
structure takes into account the evolution of the process 
not only from the current error and its change but also 
from the effects of the previous control actions. 
 
     From the results obtained on the simulated example 
it is deduced that the performance of the new PAFZ-PI 
controller structure is superior than that observed in the 
traditional FZ-PI controller structure when delays exist 
in the plant being controlled. This superiority increases 
as the delay present in the system increases (see Table 
2). 
 
     It is relevant that the adjustment of the adjusting 
factor (β) for different time delays is done 
automatically. If the system time delay is not known 
then only estimating the biggest possible time delay in 
the system and adjusting the gain in the block Adjust β, 
for this value, time delay compensation can be obtained. 
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