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Abstract− In this paper a development of an adaptive 
Kalman filter through a fuzzy inference system (FIS) is 
outlined. The adaptation is concerned with the imposition of 
conditions under which the filter measurement noise 
covariance matrix R or the process noise covariance matrix Q 
are estimated. The adaptive adjustment is carried out using a 
FIS based on the whiteness of the filter innovation sequence 
(IS) and employing the covariance-matching technique. If a 
statistical analysis of the IS shows discrepancies with its 
expected statistics then the FIS adjusts a factor through which 
the matrices R or Q are estimated. This fuzzy adaptive 
Kalman filter is tested on a numerical example. The results 
are compared with these obtained using a conventional 
Kalman filter and a traditionally adapted Kalman filter. The 
fuzzy-adapted Kalman filter showed better results than its 
traditional counterparts. 
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1. Introduction 
The Kalman filter is an optimal recursive data processing 
algorithm [Maybeck, 1979] that provides a linear, unbiased, 
and minimum error variance estimate of the unknown state 
vector n

kx ℜ∈  at each instant k = 1,2,…, (indexed by the 

subscripts) of a discrete-time controlled process that is 
governed by the linear stochastic difference equation 
 

kkkkkk wuBxAx ++=+1
     (1) 

 
where xk is an (n × 1) system state vector, Ak is an (n × n) 
transition matrix, uk is an (l × 1) vector of the input forcing 
function, Bk is an (n × l) matrix, and wk is an (n × 1) process 
noise vector. The discrete vector measurement m

kz ℜ∈  is 

given by 
 

kkkk vxHz +=         (2) 

 
where zk is a (m × 1) measurement vector, Hk is a (m × n) 
measurement matrix, and vk is a (m × 1) measurement noise 
vector. 
 

 Both wk and vk are assumed to be uncorrelated zero-mean 
Gaussian white noise sequences with covariances 
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where E{ ⋅} is the statistical expectation, superscript T denotes 
transpose, Qk is the process noise covariance matrix, and Rk is 
the measurement noise covariance matrix. 
 
 The Kalman filter algorithm has two groups of equations 
[Welch and Bishop, 1995], 
 
i) Time update (or prediction) equations: 
 

 kkkkk uBxAx +=−
+ ˆˆ 1        (6) 

 k
T
kkkk QAPAP +=−

+1        (7). 

 
 These equations project, from time step k to step k+1, the 
current state and error covariance estimates to obtain the a 
priori (indicated by the super minus) estimates for the next 
time step. 
 
ii) Measurement update (or correction) equations:  
 
 1][ −−− += k

T
kkk

T
kkk RHPHHPK    (8) 

 ]ˆ[ˆˆ −− −+= kkkkkk xHzKxx      (9) 
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 These equations incorporate a new measurement into the a 
priori estimate to obtain an improved a posteriori estimate. 
 
 In the above equations, kx̂  is an estimate of the system 

state vector xk, and Pk is the covariance matrix corresponding 
to the state estimation error defined by 
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the term −
kk xH ˆ  is the one-stage predicted output kẑ , and 

)ˆ( −− kkk xHz  is the one-stage prediction error sequence, 

also referred to as the innovation sequence or residual, 
generally denoted as r and defined as: 
 
 )ˆ( −−= kkkk xHzr         (14). 

 
 The innovation represents the additional information 
available to the filter in consequence to the new observation 

kz . For an optimal filter the innovation sequence is a 

sequence of independent Gaussian random variables. The 
weighted innovation, ]ˆ[ −− kkk xHzK , acts as a correction to 

the predicted estimate −
kx̂  to form the estimation kx̂ ; the 

weighting matrix Kk is commonly referred to as the filter gain 
or the Kalman gain matrix. 
 
 The matrices Ak, Bk and Hk are assumed to be known. Qk 
and Rk are nonnegative definite matrices whose values are 
also assumed known. The Kalman filter algorithm starts with 
initial conditions at 0=k  being: −

0x̂ , and −
0P . With the 

progression of time, as new measurements zk become 
available, the cycle estimation-correction of states and the 
corresponding error covariances can follow recursively ad 
infinitum. 
 
 
2. Statement of the problem 
The Kalman filter formulation as described previously 
assumes complete a priori knowledge of the process and 
measurement noise statistics, matrices Q and R. However, in 
most practical applications these statistics are initially 
estimated or in fact are unknown. The problem here is that the 
optimality of the estimation algorithm in the Kalman filter 
setting is closely connected to the quality of these a priori 
process noise and measurement noise statistics [Brown and 
Hwang, 1997; Mehra, 1970; Fitzgerald, 1971]. It has been 
shown that inadequate initial statistics of the filter will reduce 
the precision of the estimated states or will introduce biases to 
the estimates. In fact, wrong a priori information could cause 
practical divergence of the filter [Fitzgerald, 1971]. 
Additionally, insufficient a priori information and a 
frequently changing estimation environment will affect the 
accuracy of the Kalman filter. From the aforementioned it 
may be argued that using a fixed Kalman filter designed by 
conventional methods in a changing dynamic environment is 
a major drawback. From this point of view it can be expected 
that an adaptive estimation formulation of the Kalman filter 
will result in a better performance or will prevent filter 
divergence. 

 
Different adaptive procedures have been devised [Mehra, 

1972; Moghaddamjoo and Kirlin, 1989; Mohamed and 
Schwarz, 1999] since the development of the Kalman filter 
[Kalman, 1960]. The main advantage of the adaptive 
technique is its weaker reliance on the a priori statistical 
information. An adaptive filter formulation deals with the 

problem of having imperfect a priori information and 
provides an improvement in performance over the fixed filter 
approach. 

 
The procedures used to adapt a Kalman filter can be 

classified into two main approaches: innovation-based 
adaptive estimation (IAE) and multiple-model-based adaptive 
estimation (MMAE) [Mohamed and Schwarz, 1999]. In the 
former the adaptation is made directly to the statistical 
information matrices R and/or Q based on the changes in the 
filter innovation sequence. In the second, a bank of Kalman 
filters runs in parallel with different models for the filter’s 
statistical information. In both techniques the concept of 
utilising the new information available in the innovation (or 
residual) sequence is used but they differ in their 
implementation. In this work only the first approach will be 
examined, for the second approach the reader is referred to 
Brown and Hwang [1997]. 
 
 The IAE approach is based on the improvement of the 
filter performance through the adaptive estimation of the filter 
statistical information, the matrices Q and/or R. The 
adaptation mechanism is based on the whiteness of the filter 
innovation sequence, Eq. (14). 
 
 The value of the innovation at the current instant k cannot 
be predicted from previous values. Therefore, the innovation 
represents the additional information available to the filter as 
a result of the new measurement kz . For this reason the 

innovation sequence represents the information content in the 
new observation and is considered the most relevant source of 
information for the filter adaptation. The occurrence of bad 
data first shows up in the innovation vector. In this way the 
innovation sequence reports the discrepancy between 
predicted and actual measurement. If all prerequisites are met, 
the innovation sequence is a zero-mean white noise sequence 
[Dall, 1998 
 

The adaptation procedure in this work is concerned with 
the imposition of conditions under which the filter statistical 
information matrices R or Q are estimated via the available 
new information given by the filter innovation sequence. We 
note that these matrices are considered as constants in the 
conventional Kalman filter. 
 
 
3. Adaptive Kalman filtering 
 
3.1. Adaptive estimation of the measurement noise covariance 
matrix R with Q fixed. 
 
The covariance matrix R represents the accuracy of the 
measurement instrument. The enlargement of the covariance 
matrix R for measured data means that we trust this measured 
data less and more on the prediction. Assuming that the noise 
covariance matrix Q is completely known, an algorithm to 
estimate the measurement noise covariance matrix R can be 
derived. 



Here an IAE algorithm to adapt the matrix R has been 
derived. The technique known as covariance-matching 
[Mehra, 1972] is used to adapt the covariance matrix R. The 
basic idea behind this technique is to make the residuals 
consistent with their theoretical covariance [Mohamed and 
Schwarz, 1999]. The innovation sequence rk has a theoretical 
covariance, 
 

k
T
kkkk RHPHS += −        (15) 

 
obtained from the Kalman filter algorithm. If it is noticed that 
the actual covariance of rk has discrepancies with its 
theoretical value, then adjustments have to be made to R in 
order to correct this mismatch. 
 
 To monitor the discrepancy of S and its actual value a new 
variable is defined. This variable is called Degree of 
Matching (DoM), 
 

rkkk CSDoM ˆ−=        (16). 

 
Having available the innovation sequence rk, its actual 

covariance rkĈ in Eq. (16) is approximated by its sample 

covariance through averaging inside a moving estimation 
window of size N [Mohamed and Schwarz, 1999], 
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where 10 +−= Nki  is the first sample inside the estimation 

window. The window size, N, is chosen empirically to give 
some statistical smoothing. 
 
 DoM is used to indicate the degree of discrepancy 
between the theoretical value of the innovation covariance S 

and its actual value rkĈ . If DoM is around zero that means S 

and rkĈ  match almost perfectly, then no changes are needed. 

If DoM is greater than zero this means the actual value of 

rkĈ  is smaller than its theoretical value S, then an adjustment 

is needed. Conversely, if DoM is smaller than zero, this 

means the value of rkĈ  is greater than its theoretical value S, 

then an adjustment is needed too. 
 

The basic idea of adaptation used by a FIS to adapt R is as 
follows. It can be appreciated from Eq. (15) that an increment 
in R will increment S, and vice versa. Thus, R can be used to 
vary S in accordance with the value of DoM in order to reduce 

the discrepancies between S and rkĈ . The next three general 

adaptation rules are defined: 
 

1. If DoM ≅ 0 (this means rkĈ  and S are equal) then maintain 

R unchanged. 

2. If DoM > 0 (this means rkĈ  is smaller than S) then 

decrease R. 

3. If DoM < 0 (this means rkĈ  is greater than S) then 

increase R. 
 
And R is adjusted on this way 

 

AdjRRR kk +=+1         (18). 

 
where AdjR is the factor that is added or subtracted from R. 
AdjR is the FIS output. 
 
3.2. Adaptive estimation of the process noise covariance 
matrix Q with R fixed. 
 
The covariance matrix Q represents the uncertainty in the 
process model. An increase in the covariance matrix Q means 
that we trust less the process model and more on the 
measurement. Assuming that the noise covariance matrix R is 
completely known an algorithm to estimate matrix Q can be 
derived. 
 

The idea behind the process of adaptation of Q is as 
follows. Eq. (15) can be rewritten as: 
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and from Eq. (19) it may be deduced that a variation in Q 

will affect the value of S. If Q is increased, then S is 
increased, and vice versa. Thus, if a mismatch between S and 

rkĈ  is observed then a correction can be made through 

augmenting or diminishing the value of Q. The next three 
general adaptation rules are defined: 
 

1. If DoM ≅ 0 (this means rkĈ  and S are equal) then maintain 

Q unchanged. 

2. If DoM > 0 (this means rkĈ  is smaller than S) then 

decrease Q. 

3. If DoM < 0 (this means rkĈ  is greater than S) then 

increase Q. 
 
Thus Q is adjusted in this way 

AdjQQQ kk *1 =+         (20). 

 
where AdjQ is a factor obtained with a FIS. 
 
 
4. Illustrative example 
To demonstrate the efficiency of the fuzzy-adapted Kalman 
filter approach, a simple numerical example is presented. The 



results are compared with those obtained with a Kalman filter 
without adaptation (KFWA) and a traditionally-adapted 
Kalman filter (TKF). 
 

Consider the following linear system, which is a modified 
version of a tracking model [Paik and Oh, 2000; Chen and 
Chui, 1991], 
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with initial conditions 0ˆ 0 =x , 

30 01.0 IP = , where x1, x2, 

and x3 are the position, velocity and acceleration, 
respectively, of a flying object. In Eq. 21, the system and 
measurement noise sequences {wk} and {vk} are 
pseudorandom sequences (i.e., uncorrelated zero-mean 
Gaussian white noise sequences) with Q = 0.02I3 and R = 1. 
 

MATLAB code was developed to simulate the Kalman 
filter and the fuzzy logic inference system used to adjust the 
measurement noise covariance matrix R and the process noise 
covariance matrix Q. The results obtained are presented in 
next sections. 
 
4.1. Fuzzy Adaptation of R and comparisons. 
 
Five fuzzy sets have been defined for DoM: NM = Negative 
Medium, NS = Negative Small, ZE = ZEro, PS = Positive 
Small, and PM = Positive Medium; and five fuzzy sets have 
been defined for AdjR: IL = Increase Large, I = Increase, M = 
Maintain, D = Decrease, and DL = Decrease Large. Five 
fuzzy rules comprise the rule base, 
 

1. If DoM = NM, then AdjR = IL 
2. If DoM = NS, then AdjR = I 
3. If DoM = ZE, then AdjR = M 
4. If DoM = PS, then AdjR = D 
5. If DoM = PM, then AdjR = DL. 

 
The membership functions for DoM and AdjR are 

presented in figure 1. The model described by Eq. 21 was 
simulated for 500s with a sample time of 0.5s. Q was fixed as 
0.02I3. The actual value of R is unity, but it has been assumed 
unknown. The starting value of R was selected to be, 
 

RR 50 =           (23) 

 
The value of R is continuously adjusted once the first 

value of rkĈ  was available. Recall that this last parameter is 

obtained from a moving estimation window of size N. 

 
The following performance measures were adopted for 

comparison purposes: 
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where zi is the actual value of the position; zvi is the measured 
position; and zei  is the estimated position. 
 

The traditional adaptation method proposed by Mohamed 
and Schwarz (1999) was used to adapt R and Q. In this 
method R or Q are adapted using the following equations, 
 

T
kk

T
krkk HPHCR −−= ˆˆ       (25) 

T
krkkk KCKQ ˆˆ =         (26), 

 

where rkĈ  is obtained with Eq. 18. T
kH , −

kP , and kK  are 

those obtained in the Kalman filter algorithm.  
 
 Table 1 shows the performance measures obtained for 
each of the three methods: KFWA – Kalman filter without 
adaptation; TKF – Traditionally-adapted Kalman filter; and 
FKF – Fuzzy-adapted Kalman filter. From experimentation it 
was noticed that the best results were obtained with a window 
size of 200 samples for the TKF and 50 samples for the FKF. 
 

Table 1 
Performance 
measure 

KFWA TKF FKF 

J1 0.9478 0.9478 0.9478 
J2 0.3882 0.3556 0.3541 

 
 From table 1 it is seen that the best adaptation of R is 
made by the FKF. Figure 2 shows the outputs obtained from 
the KFWA. Notice the discrepancy between the actual 

innovation covariance rkĈ  and its theoretical value Sk. In this 

case because both Q and R are fixed DoM remains a large 
value. Figure 3 shows the outputs obtained from the TKF. In 

this case once the first value of rkĈ  is available the 

adjustment of R is continuously made. It can be seen how 
DoM remains at a very small value while R almost reaches its 
true value. The filter performance improvement is obvious. 
Figure 4 shows the outputs obtained from the FKF. As in the 

TFK case, once the first value of rkĈ  is available the 

adjustment of R starts. In this case because the window size is 

smaller the adaptation starts earlier. Observe how Sk and rkĈ  

remain almost equal (DoM is around zero) and R oscillates 



around its true value. Here it is deduced that the best 
performance is obtained because the adaptation is achieved in 
a gradual manner and starts early. The same widow size was 
tried in the TFK but in that case no improvement in 
performance was obtained. In fact, for the TKF the best 
performance was obtained with the window size of 200 
samples as reported earlier. 
 
4.2. Fuzzy Adaptation of Q and comparisons. 
 
Five fuzzy sets have been defined for DoM with the same 
labels but different membership functions than those in the 
previous case. In this case only three fuzzy sets have been 
defined for AdjQ: I = Increase, M = Maintain, and D = 
Decrease. Thus, five fuzzy rules comprise the rule base, 
 

1. If DoM = NM, then AdjQ = I 
2. If DoM = NS, then AdjQ = I 
3. If DoM = ZE, then AdjQ = M 
4. If DoM = PS, then AdjQ= M 
5. If DoM = PM, then AdjQ = D. 

 
The membership functions for the variables DoM and 

AdjQ are presented on figure 5. The model described by Eq. 
21 was simulated for 500s with a sample time of 0.5s. In this 
case R was fixed as unity. The actual value of Q is 0.02I3, but 
it has been assumed as unknown. The starting value of Q was 
selected to be, 
 

QQ 50 =           (23). 

 
The value of Q was continuously adjusted ones the first 

value of rkĈ  was available. Table 2 shows the performance 

measures obtained for the three methods. In this case, from 
experimentation it was noticed that the best results were 
obtained with a window size of 100 samples for both TKF 
and FKF. As can be seen, the FKF has the best performance 
as in the previous case. 
 

Table 2 
Performance 
measure 

KFWA TKF FKF 

J1 0.9478 0.9478 0.9478 
J2 0.3891 0.3528 0.3489 

 
Figure 6 shows the outputs obtained from the KFWA. 

Here, as in the previous case, a discrepancy between the 

actual innovation covariance rkĈ  and its theoretical value Sk 

is observed. DoM is not as large as before but it remains close 
to zero. Figure 7 shows the outputs obtained from the TKF. In 

this case once the first value of rkĈ  is available the 

adjustment of Q is continuous. This adjustment is observed in 

the variation of S, which is attempting to follow rkĈ . DoM 

remains around zero. However a good improvement in filter 
performance is observed. Figure 8 shows the outputs obtained 

from the FKF. It can be seen that in this case Sk follows rkĈ  

a little more precisely than in the previous case. This gives a 
result that is a better improvement in the filter performance 
than before. 
 
 
5. Conclusions 
In this paper a fuzzy inference system to adapt the 
measurement noise covariance matrix R or the process noise 
covariance matrix Q of a Kalman filter have been presented. 
This method uses the covariance-matching technique to 
determine if adjustments to R or Q are needed. An example 
showing the efficiency of this method was presented. In this 
example, only five rules were needed to carry out the 
adaptation in each case. It was observed that better 
performance was obtained with the fuzzy-adapted Kalman 
filter than that obtained with both KFWA and TKF. It is 
relevant to notice that, in the case of the adaptation of R, the 
window size used to calculate the current innovation 
covariance is 3 times smaller in the FKF than that used in the 
TKF. However, for the adaptation of Q the same window size 
can be used. The dependence on the window size for good 
adaptation in both TKF and FKF is an open line to 
investigate. In this case only single-input, single-output 
(SISO) FISs were used and good results were obtained. 
However, better results can be expected if more than one 
input to the FISs is used. This is another line of research. The 
system used to explore the efficiency of the proposed method 
was simple, so the design of an alternative method for a more 
sophisticated system may be needed to give more support to 
the efficiency of the approach. 
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FIGURES 

 
  Figure 1.   Membership functions for DoM and AdjR. 

 
Figure 2.   Kalman filter without adaptation, Q and R 

fixed. 

 

 
Figure 3.   Traditionally-adapted Kalman filter, 

      Q fixed. 
 

 
Figure 4.   Fuzzy-adapted Kalman filter. 

       Q fixed. 



 
Figure 5.   Membership functions for DoM and AdjQ. 

 

 
Figure 6.   Kalman filter without adaptation, Q and R 

 fixed. 
 

 
 
 
 
 

 
Figure 7.   Traditionally-adapted Kalman filter, 

      R fixed. 
 

 
Figure 8.   Fuzzy-adapted Kalman filter, 

       Q fixed. 
 
 
 


