
 INSTITUTO POLITÉCNICO NACIONAL

 CENTRO DE INVESTIGACIÓN EN COMPUTACIÓN

 T E S I S

 IoTsecM: UML/SysML Extension for Internet

 of Things Security Modelling

 QUE PARA OBTENER EL GRADO DE

 Maestría en Ciencias en Ingeniería de Cómputo

 P R E S E N T A
 Ing. David Alejandro Robles Ramirez

 DIRECTOR DE TESIS

 Dr. Ponciano Jorge Escamilla Ambrosio

 Ciudad de México Diciembre 2017

I

II

III

RESUMEN

El dominio del Internet de las cosas implica un cambio revolucionario en nuestro entorno, nuevos

elementos virtuales se agregan al Internet, los cuales son intitulados las "Cosas". Los objetos físicos

son representados como datos digitales a través de las mediciones de los sensores que se envían a

una puerta de enlace y viajan por Internet a cualquier otra parte del mundo, donde esos datos se

traducen en información y se utilizan para el interés del usuario. Los usuarios no son sólo humanos,

hay sistemas donde las "cosas" observan, interactúan y actúan con otras "cosas" sin interacción

humana.

A medida que crece la cantidad de entidades conectadas a Internet, la superficie de ataque

también crece. Los sistemas del IoT imponen nuevos desafíos para la atención de los requisitos de

seguridad, además cada día aparecen más atacantes motivados. A pesar de estos hechos, los

requerimientos de seguridad dentro de los sistemas de IoT se toman en cuenta como una idea

posterior al diseño del sistema, sin importar que la información manejada por esos sistemas es muy

sensible en la mayoría de los casos.

En esta tesis se propone un enfoque denominado IoTsecM. Esta propuesta es una extensión

UML / SysML para el modelado de requisitos de seguridad dentro de la etapa de análisis en un ciclo

de vida de desarrollo de cascada dentro de un proceso de Ingeniería de Sistemas Basado en

Modelos. IoTsecM permite la representación de requisitos de seguridad en dos lenguajes de

modelado muy conocidos, UML y SysML. Con la utilización de esta extensión, los desarrolladores de

IoT pueden tener en cuenta los requisitos de seguridad desde la etapa de análisis en el proceso de

diseño de los sistemas de IoT. Esto significa que el enfoque propuesto permite que los sistemas de

IoT se diseñen teniendo en cuenta las posibles amenazas y el análisis de los requisitos de seguridad

correspondientes.

La aplicación de IoTsecM en sistemas de la vida real mostró poder representar los

requerimientos de seguridad de dichos sistemas. IoTsecM se aplicó en dos casos de estudio, el

primero relacionado con vehículos autónomos y el segundo, un sistema en el dominio mHealth, en

esos sistemas la aplicación de IoTsecM representó los requisitos de seguridad identificados junto

con los elementos de arquitectura del sistema, en ambos casos todas las contramedidas

identificadas se representaron con el perfil IoTsecM. Por lo tanto, la aplicación de la propuesta fue

verificada ya que se demostró que fue capaz de representar todas las contramedidas a ataques

identificadas con el perfil IoTsecM.

La utilización de IoTsecM en sistemas IoT, da como resultado la consideración y

representación de requisitos de seguridad en diagramas UML / SysML, por lo que es una extensión

UML / SysML que ayuda a los desarrolladores a considerar los requisitos de seguridad desde la etapa

de análisis para obtener los mecanismos y controles de seguridad para todo el sistema.

IV

ABSTRACT

The Internet of Things domain implies a revolutionary change in our environment, new virtual

elements are aggregated to the Internet, and these are the “Things”. The physical objects are

represented as digital data through the sensors measurements which are sent to a gateway and

travel along the Internet to any other part of the world, where that data is translated into

information and used for the user interest. The users are not only humans, there are systems where

the “things” observe, interact, and act on other “things” without human interaction.

As the number of entities connected to the Internet grows, the attack surface grows as well.

The IoT systems impose new challenges for security requirements identification and depicting, and

more motivated attackers appear every day. Nevertheless these facts, the security requirements

within IoT systems are reviewed as an after-thought, even when the information handled by those

systems is very sensitive in most cases.

In this thesis work an approach referred to as IoTsecM is proposed. This proposal is an

UML/SysML extension for security requirements modelling within the analysis stage in a waterfall

development life cycle in a Model Based Systems Engineering Approach. IoTsecM allows the security

requirements representation in two very well-known modelling languages, UML and SysML. With

the utilisation of this extension IoT developers are able to take into consideration the security

requirements from the analysis stage in the designing process of IoT systems. This means that the

proposed approach allows IoT systems to be designed considering possible threats and the

corresponding security requirements analysis.

IoTsecM demonstrated to be able to depict the security requirements in IoT real-life

systems. IoTsecM was applied in two study cases related to autonomous vehicles and mHealth

domains, in those systems IoTsecM was able to represent the security requirements identified

within the system architecture elements, in both cases all countermeasures identified were

depicted with the IoTsecM profile. Therefore, the proposal was validated since the applicability of

IoTsecM was demonstrated.

The utilisation of IoTsecM in IoT systems, helps to enforce the inclusion and representation

in the form of UML/SysML diagrams of security requirements, hence, it is UML/SysML extension

which helps developers to include security requirements from the analysis stage to the latest system

design in order to obtain the security mechanisms and controls for the whole system.

V

ACKNOWLEDGEMENTS

This thesis is the result of more than two years of work, I would like to thank to Dr. Ponciano Jorge

Escamilla Ambrosio for all his time and talks we had along my time doing the masters studies, I

would like to thank to Dr. Sandra Dinora Orantes Jiménez for guiding me in my thesis development

and for her time and considerations. The Cybersecurity laboratory gave me the knowledge and

theoretical bases, I would like to thank each one of the laboratory members. The CIC opened its

doors, I would like to thank to the directors and administration people. Finally I would like to thank

to CONACyT for sponsor me during my time at CIC.

I would like to say thank you to my parents for showing me my basis and show me the way to

follow. I would like to thank to Laura, for her support, orientation and time. To all my family and

friends.

VI

DEDICATION

This thesis is not a work done just by me. I dedicate this thesis to my parents, they are the

fundamental part of my life, and all my achievements contain their names in them. I would like to

dedicate this thesis to Laura my life partner who is always there for me in an unconditional way.

VII

TABLE OF CONTENTS

1 Introduction .. 1

1.1 Background – The Internet of Things .. 1

1.1.1 IoT definition ... 1

1.1.2 IoT constraints and challenges .. 4

1.1.3 Security in the IoT .. 6

1.1.4 Model Based Systems Engineering and Lifecycle Development models 16

1.2 Problem Statement ... 17

1.3 Hypothesis ... 21

1.4 Objectives .. 21

1.4.1 General objective .. 21

1.4.2 Particular objectives .. 21

1.5 Scope of work .. 22

1.6 Contributions ... 22

1.7 Research and development method used .. 23

1.8 Organisation of the thesis ... 23

2 State of the Art .. 25

2.1 IoT modelling ... 25

2.1.1 UML4IoT .. 25

2.1.2 IoT-A .. 29

2.1.3 IoTLite .. 32

2.2 UML/SysML Security extensions ... 33

2.2.1 UMLsec .. 33

2.2.2 Fault Tree Analysis (FTA), IBM ... 38

2.2.3 SecureUML .. 42

2.2.4 SysMLsec ... 43

2.2.5 IoT-A security model ... 44

3 Theoretical Framework ... 46

3.1 Unified Modelling Language ... 46

3.2 UML extension .. 50

3.2.1 UML profile .. 50

VIII

3.3 SysML .. 52

3.4 Vulnerabilities, threats, risks and attacks for IoT .. 55

4 IoTsecM: Methodology and research development ... 63

4.1 IoTsecM actors .. 65

4.2 Nomenclature ... 68

4.2.1 Authentication: N .. 69

4.2.2 Authorization: Z ... 74

4.2.3 C: Cipher and D: Decipher ... 77

4.2.4 SS: Secure Storage ... 82

4.2.5 SC: Secure Communication ... 83

4.2.6 KM: Key Management ... 86

4.2.7 T&R: Trust and Reputation .. 88

4.2.8 IM: Identity Management and Ps:Pseudonym .. 90

4.2.9 CA: Certification Authority and RA: Registration Authority 92

4.2.10 TP: Tamper Protection .. 96

4.2.11 BM: Behaviour monitor ... 97

5 Application of IoTsecM profile and results discussion .. 100

5.1 Autonomous vehicles .. 101

5.2 IoTsecM designing security in an mHealth application ... 136

6 Conclusions and future work .. 160

6.1 Conclusions ... 160

6.2 Future work ... 161

6.3 Research Outputs .. 162

References ... 164

IX

List of Figures

Fig. 1 General Waterfall Lifecycle Development Model ... 17

Fig. 2 UML4IoT Profile taken from [22]. .. 27

Fig. 3 The cyber interface of the SmartSilo marked with model elements of the UML4IoT profile

[22] .. 28

Fig. 4 UML representation of the IoT Domain Model taken from [27] ... 31

Fig. 5 An overview of the IoT-lite model, taken from [28]. ... 33

Fig. 6 IBM FTA symbols, taken from [19] .. 40

Fig. 7 IBM SAD example, taken from [19]. .. 41

Fig. 8 SecureUML Metamodel, taken from [31]. .. 42

Fig. 9 SysMLSec security requirements example, taken from [33]. ... 43

Fig. 10 UML 2.5 diagrams, adapted from [38]. .. 47

Fig. 11 SysML Diagram Taxonomy, adapted from [42]. ... 53

Fig. 12 IoTsecM profile nomenclature overview ... 64

Fig. 13 IoTsecM profile actors. .. 66

Fig. 14 <<N>> stereotype as a requirement over the actor's head. ... 71

Fig. 15 <<N>> stereotype as a use case. ... 72

Fig. 16 IoTsecM <<N>> stereotype and metaclasses extended. ... 73

Fig. 17 Z element for authorised actors. ... 76

Fig. 18 <<Z>> stereotype applied in a use case ... 76

Fig. 19 <<Z>> stereotype definition. ... 77

Fig. 20 <<C>> use case example. ... 80

Fig. 21 <<C>> stereotype definition. ... 80

Fig. 22 <<D>> stereotype definition. ... 82

Fig. 23 <<SS>> stereotype definition. .. 83

Fig. 24 <<SC>> stereotype definition. ... 85

Fig. 25 <<KM>> stereotype definition. .. 87

Fig. 26 <<T&R>> stereotype definition. .. 89

Fig. 27 <<Ps>> stereotype example. ... 91

Fig. 28 <<Ps>> stereotype definition. .. 91

Fig. 29 <<IM>> stereotype definition. ... 92

Fig. 30 Certificate structure according to the ITU standard X.509. ... 93

Fig. 31 <<CA>> stereotype definition. ... 94

Fig. 32 <<RA>> stereotype definition. ... 95

Fig. 33 <<TP>> stereotype definition. ... 97

Fig. 34 <<BM>> stereotype definition. .. 99

Fig. 35 Flourish project overview. ... 101

Fig. 36 Flourish architecture overview. ... 106

Fig. 37 Block communication from CAVs to RSU attak tree. ... 109

Fig. 38 Spoofing BBR data attack tree. .. 111

Fig. 39 Carer impersonation attack tree. .. 112

Fig. 40 Jamming the RSU communication. .. 113

X

Fig. 41 Spoofing RSU output data attack tree. .. 115

Fig. 42 Flashing Control Node data attack tree. .. 116

Fig. 43 LIDAR sceneario use case diagram. ... 117

Fig. 44 Collaborative manoeuvring scenario use case diagram. ... 123

Fig. 45 Special zone request scenario use case diagram. ... 129

Fig. 46 NRE unplanned incident management scenario use case diagram..................................... 132

Fig. 47 Parking advisory scenario use case diagram. .. 132

Fig. 48 Flourish architecture applying the IoTsecM profile. .. 135

Fig. 49 Dentify.Me App architectural view. ... 141

Fig. 50 “Eyewitness unable to report Incident” attack tree. ... 144

Fig. 51 Rescue Team cannot access affected victim list attack tree. .. 146

Fig. 52 Communication interception from mobile attack tree. .. 147

Fig. 53 Database theft of basic information from all users attack tree. ... 148

Fig. 54 Recognition device does not recognize attack tree. .. 149

Fig. 55 Unauthorised access to router attack tree. ... 150

Fig. 56 Unauthorised access to the list attack tree. .. 151

Fig. 57 DVI team cannot access pending conformation list attack tree. ... 152

Fig. 58 IoTsecM use case diagram for Dentify.Me App. .. 155

Fig. 59 IoTsecM class diagram for Dentify.Me App. .. 157

XI

LIST OF TABLES

Table 1 UMLsec Stereotypes: ... 35

Table 2 IoT-A components [10]. ... 44

Table 3 OWASP IoT attack surfaces and vulnerabilities ... 57

Table 4 IoTsecM profile nomenclature. ... 68

Table 5 Flourish assets ... 103

Table 6 <<C>> use case for CAV, scenario 1. .. 118

Table 7 <<N>> authenticates use case for CAV, scenario 1 ... 118

Table 8 <<D>> Deciphers1 use case for CAV, scenario 1. .. 119

Table 9 <<C>>RSUEncrypts use case for RSU, scenario 1. ... 119

Table 10 <<N>> use case for CAV, scenario 1. ... 120

Table 11 <<BM>> implements an IPS use case for RSU, scenario 1. .. 121

Table 12 <<D>> RSUDecrypyts use case for CAV, scenario 1. .. 121

Table 13 <<N>>authenticates use case for RSU, scenario 2. ... 123

Table 14 <<BM>>authenticates use case for RSU, scenario 2. .. 124

Table 15 <<C>>encrypts use case for CAV, scenario 2. .. 124

Table 16 <<N>>CAVAuthenticates use case for CAV, scenario 2. .. 125

Table 17<<D>>Deciphers use case for CAV, scenario 2. .. 126

Table 18 <<C>>ControlNodeEncrypts use case for Control Node, scenario 2. 126

Table 19 <<D>>Deciphers use case for Control Node, scenario 2. .. 127

Table 20 <<BM>>Control node use case for Control Node, scenario 2. .. 127

Table 21 <<N>>CarerAuthenticates use case for Carer, scenario 3. .. 129

Table 22 <<Z>>RSUAuthorizes use case for RSU, scenario 3 ... 129

Table 23 <<BM>> monitors the packets received use case for CAV, scenario 3. 130

Table 24 <<Z>>CAVAuthorizes use case for CAV,, scenario 3. ... 131

Table 25 <<N>>NREAuthenticates use case for NRE, scenario 4. .. 133

Table 26 <<BM>>implements an IPS use case for CAV, scenario 4. .. 133

Table 27 IoTsecM comparison.. 159

XII

LIST OF ACRONYMS

Acronym Meaning

ABAC Attribute Based Access Control

ACL Access Control List

AKE Authenticated Key Exchange

AP Access Point

AWS Amazon Web Services

BDD Block Definition Diagram

BM Behaviour Monitor

C Cipher

CA Certification Authority

CAV Collaborative autonomous vehicle

CBC Cipher Block Chaining

CLI Command Line Interface

CoAP Constrained Application Protocol

CPS Cyber Physical Systems

CSR Certificate Signing Request

D Decipher

DoS Denial of Service

DTLS Datagram Transport Layer Security

DVI Disaster Victim Identification

EC Elliptic Curve

ETSI European Telecommunications Standards Institue

FMEA Failure Means and Effect Analysis

FTA Fault Tree Analysis

HDMI High Definition Multimedia Interface

HDV Human Driven Vehicles

IBD Internal Block Diagram

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IFC Integer Factorisation Cryptography

IIRA Industrial Internet Reference Architecture

IM Identity Management

IoT Internet of things

IoT-A Internet of Things Architecture

IoTsecM Internet of Things Security Modelling

IPS Intrusion Prevention System

IPSO Internet Protocol for Smart Objects

ITS Intelligent transport systems

ITU Internet Engineering Task Force

KM Key Management

KMS Key Management Systems

XIII

LWM2M Light Weight Machine to Machine

M2M Machine-to-Machine

MAC Message Authentication Code

mApp Mobile Application

MBSE Model Based Systems Engineering

MITM Man In The Middle

MOF Meta Object Facility

N Authentication

NFC Near Field Communication

NIST National Institute of Standards and Technology

NRE Network Rules Engine

OCL Object Constraint Language

OMA Open Mobile Alliance

OMG Object Management Group

OO Object Oriented

OWASP Open Web Application Security Project

PAP Policy Administration Point

PDP Policy Decision Point

PE Physical Entity

PEP Policy Enforcement Point

PFS Perfect Forward Secrecy

PII Personally Identifiable Information

PKC Public Key Cryptography

PKI Public Key Infrastructure

PPKI Pseudonym Public Key

RA Registration Authority

RBAC Role Based Access Control

REST Representational State Transfer

RFID Radio-frequency identification

RSA Rivest Shamir Adelman

RSU Road Side Unit

SAD Safety Analysis Diagram

SAML Security Assertion Markup Language

SC Secure Communication

SS Secure Storage

SSL Secure Socket Layer

SSN Semantic Sensor Network

T&R Trust and Reputation

TLS Transport Layer Security

TP Tamper Protection

TPM Tamper Proof Management

UML Unified Modelling Language

V2X Vehicles to everything

VE Virtual Entity

VPN Virtual Private Network

webApp Web Application

XIV

WSN Wireless Sensor Network

XSS Cross Site Scripting

Z Authorization

1 Chapter 1 Introduction

1 INTRODUCTION

1.1 BACKGROUND – THE INTERNET OF THINGS

Humanity has experienced many technological changes along the digital and computational age,

since the first transistor until the quantum computer (at least in concept) the human evolution has

had many changes. Industry, developers and users have used the Internet as a principal medium to

establish communication, business relationships and even human relationships. The current

Internet is the most powerful World Wide Web which through computers are able to share

information in a complex structure, it enables computer communications despite the physical

distance between them. People use Internet through computers and mobile devices, most of them

work with the same protocols and standards. The Internet itself has many characteristics,

constraints and considerations. As in the life, in technology “the only thing that is constant is the

change” Heraclitus. Therefore, the Internet as it was known has changed, nowadays the Internet

has evolved in so many ways, now there are more assets such as sensors, mechatronics systems,

cyberphisical systems (CPS), etc. which pass data through the Internet to reach computers, CPS or

any other asset. Therefore, the current technologic binding is huge and depicts the concept of

Internet of Things (IoT).

1.1.1 IoT definition

Kevin Ashton firstly proposed the concept of IoT in 1999, and he referred the IoT as uniquely

identifiable interoperable connected objects with radio-frequency identification (RFID) technology,

however, this definition does not cover utterly the IoT spectrum nowadays. Internet of Things (IoT)

is a domain that integrates different technological and social fields.

There are many approaches which define the IoT, before delving in a unique definition it

would be good to introduce the most relevant ones, these definitions include the most important

organisms or authorities in the topic [1]:

2 Chapter 1 Introduction

 Institute of Electrical and Electronics Engineers (IEEE): A network of items- each embedded

with sensors- which are connected to the Internet.

 European Telecommunications Standards Institute (ETSI): Machine-to-Machine (M2M)

communications is the communication between two or more entities that do not

necessarily need any direct human intervention. M2M services intend to automate decision

and communication processes.

 International Telecommunications Union (ITU): Network that is available anywhere,

anytime, by anything and anyone.

 Internet Engineering Task Force (IETF): The basic idea is that IoT will connect objects around

us (electronic, electrical, and non-electrical) to provide seamless communication and

contextual services provided by them. Development of RFID tags, sensors, actuators, mobile

phones make it possible to materialize IoT which interact and co-operate each other to

make the service better and accessible anytime, from anywhere.

 National Institute of Standards and Technology (NIST): Cyber-physical systems (CPS) –

sometimes referred to as the Internet of Things (IoT) – involves connecting smart devices

and systems in diverse sectors like transportation, energy, manufacturing and healthcare in

fundamentally news ways. Smart Cities/Communities are increasingly adopting CPS/IoT

technologies to enhance the efficiency and sustainability of their operation and improve the

quality of life.

 OASIS:” System where the Internet is connected to the physical world via ubiquitous

sensors”.

 W3C: “The Web of Things is essentially about the role of Web technologies to facilitate the

development of applications and services for the Internet of Things, i.e., physical objects

and their virtual representation. This includes sensors and actuators, as well as physical

objects tagged with a bar code or NFC. Some relevant Web technologies include HTTP for

accessing RESTful services, and for naming objects as a basis for linked data and rich

descriptions, and JavaScript APIs for virtual objects acting as proxies for real-world objects.”

Provide a unique definition for IoT is not an easy job, nevertheless, based on the previous

definitions it is possible to identify some main points and take them as a benchmark. The IoT is

characterised as interworking networks, which incorporate physical objects, through their virtual

representation which is normally their physical characteristics obtained and observed by sensors.

3 Chapter 1 Introduction

These virtual objects (“Things”) state can be modified using actuators. There are many relationships

between the IoT things even without human interaction. The IoT uses the current Internet as a

communication medium, nonetheless new and lighter protocols have been developed to optimise

the IoT devices communications to contra rest their constraints. IoT applications have two main

characteristics. The first is the distribution over a large range of processing nodes, and the second

is the high heterogeneity of the processing nodes and the protocols they use [2].

There are many application supported by the IoT, they normally involve the next domains:

Health-care, Smart Home, Insurance, Automobile/ Transport and Retail [3]. The IoT is not isolated

to a particular application sector, on the other hand there is an interconnectivity between the

different domains. This affects squarely the IoT systems an application difficulty since now there are

many interconnected things even if they belong to different systems or application fields. Therefore,

it implies a systems complexity as we have not experienced before, requiring wider communication

channels, faster technology, better security mechanisms, etc.

The IoT environment has five major components according with [4]: IoT devices, Coordinator,

Sensor Bridge, IoT services, and Controller. This topology helps to see the big picture of the IoT,

where new assets are identified such as Sensor Bridge. Therefore, the IoT components are not the

same as in the current Internet, the number of assets has grown and, as a consequence, the threats

and risks. Hence, there is a wider attack surface to thwart the system functionality.

Although the IoT is certainly the next generation of the Internet, it is still in its infant stages

and a lot of technical difficulties associated with its implementation need to be overcome. The

success of the IoT relies on the standardisation of security at various levels, which would provide

secured interoperability, compatibility, reliability and effectiveness of the operations on a global

scale [5].

4 Chapter 1 Introduction

1.1.2 IoT constraints and challenges

The IoT is a relatively new concept, hence there are still many constraints and challenges to

overcome, and as a consequence, there are also many opportunities for developers. The Internet

by itself has many constraints and challenges to be overcome, despite of that this section is focused

on the IoT-specific challenges, where indirectly the Internet issues might be included, not

necessarily in a clumsily way but in a heritage way.

In [6] a challenge compilation was done regarding the IoT systems and the main necessities

that they observed, those IoT challenges can be summarised as:

 Availability of internet at everywhere and at no cost: The availability of Internet affects

directly to the IoT success, it is seen in [6] that except North America, Europe and Oceania,

over 50% of population of the rest of the world still do not have access to the Internet.

Hence, the IoT availability is absolutely linked to the Internet availability.

 Security issues: The design and development of the Internet without any security

mechanism implementation should be unthinkable since the information within an IoT

system is very sensitive. There are many threats around the IoT environment, in particular

the challenge is to design proper countermeasures to protect the systems assets and

strengthen the current Internet security mechanisms and informatics systems security.

 Low-cost smart sensing system development: Since the IoT will have trillions of sensor

nodes around us and in the environment, one of the most important challenges is to

develop and fabricate them very cheap.

 Energy: One of the most important challenges is the power supply for sensor nodes. Usually,

batteries are used to supply the necessary energy required for sensor signal processing and

communication. New environmentally friendly rechargeable batteries need to be

developed, due to the high IoT number of devices expected.

 Computational ability: This challenge lies on the previous ones, if the energy and the cost

are adequate, then a proper computation power could be achieved, otherwise it could be

impossible.

 Scalability: Scalable systems comprise future technologies, protocols, firmware updates,

expansion of the system, etc. The scalability is related to other challenges such as availability

and energy. For this reason, without a wide communication channel provided by the

5 Chapter 1 Introduction

infrastructure, the system would be restricted to the number of devices that it can handle.

The energy affects thanks to the scalability depends on the device autonomy and the

firmware update.

 Power consumption: This challenge is related to the algorithms and communication

protocols power consumption, to find the right balance is the real goal. A sensor connected

to an IoT device or embedded in the environment, located at a very distant place where

human interaction will be hard, need to optimize its algorithms in favour of power

consumption.

 Acceptability by the industry, society and government: The IoT systems must be

trustworthy, and to guarantee this factor all the challenges referred before must be

addressed.

In the middle of the challenge galaxy, researches have been proposing to target each one.

This thesis is focused on the security concerns challenge; however it does not live alone, it depends

on the battery power, computational power etc. IoT devices have serious constraints in resources

and security, so implementing conventional security mechanisms in them is not a simple job, and

even in some cases it is unrealizable. A classification of these constraints related to security is

introduced below [4]:

Limitations based on hardware.

 Computational and energy constraint

 Memory constraint

 Tamper resistant packaging

Software-based limitations

 Embedded software constraint

 Dynamic Security Patch

Network-Based Limitations

 Mobility

6 Chapter 1 Introduction

 Scalability

 Multiplicity of devices

 Multiplicity communication medium

 Multi-Protocol Networking

 Dynamic network topology

As it can be seen, there are several challenges that must be addressed in order to provide

private companies and governments around the world with a tool to develop more IoT systems. The

success of the IoT is entirely dependent on overcoming these challenges. Hence, many researchers

have put efforts in order to deal with the IoT challenges.

Before IoT appeared, some industry sectors were not concerned about information systems

security or tampering protection, nowadays these industries such as health, vehicles and electro

domestics have implemented IoT systems within their devices, hence they are potential targets for

cyber-criminals and as a consequence they have to think in security requirements when they

develop an IoT system.

1.1.3 Security in the IoT

The IoT is changing many domains such as industries, consumer, commercial technology device

owners and infrastructure operators. All these new stakeholders are discovering themselves at the

precipice of a security nightmare [7] due to the lack of integrating security requirements in the

designing process of IoT systems. Nowadays, IoT is involved in a lot of our everyday devices, but it

will present a radical change into the actual Internet when industry and stakeholders put more

interest in IoT systems, applications and devices. It is estimated that there are 18 000 millions of

devices connected to the Internet [8], number that exceed the people on earth (7 billion people)

and it is predicted that in the year 2020 they will be 50 billion of smart devices [8]. This huge number

of devices will pose new special constraints and challenges, which must be covered for a functional

and secure support of the information, hence the IoT must be able to share and monitor information

in real time, complying with strict guidelines on the confidentiality, integrity and availability of user’s

information. The exigency to comply these security requirements is caused by the essence of the

7 Chapter 1 Introduction

IoT, which implies the obtaining, handling, distribution and analysis of personal or industrial

information without human interaction; in many scenarios, this will represent new vulnerabilities,

constraints and threats. IoT has the common Internet security lacks, moreover it also has the

sensors, physical and communication security issues. Hence, the implementation of security

mechanisms within an IoT system is not an easy job, besides it must be integrated since the analysis

and designing stages and not as an after-thought.

Nowadays, IoT systems have many security deficiencies, according to a study done by Hewlett

Packard [9] 90% of the IoT systems studied collect at least one piece of personal information through

the device, the cloud or its mobile application, so privacy issues need to be considered; 60% of

devices have vulnerable interfaces to persistent Cross-site scripting (XSS) and use weak credentials;

80% of applications do not require passwords with sufficient complexity and length; 70% of the

devices use unencrypted network service and 70% of the systems analysed allow an attacker to

identify valid user accounts. These figures are alarming since the personal information that involves

an IoT system exposes not only user information such as passwords, or system credentials, a

vulnerable IoT application can directly harm costumers due to the knowledge of routines, health,

etc., attackers can retrieve this information and exploit it by some IoT system vulnerability; to

provide a context of the risk that could exist if an IoT system is attacked, an attacker might attack

an IoT system which controls a bulb at home, so if the attacker gains the right access he would be

able to turn on, or turn off that light. On the other hand, considering an IoT system where there is

an autonomous vehicle retrieving information from the Internet, if an attacker gains access, then he

would be able to control the vehicle and induce the passengers to death, in the worst case. From

these examples we can see that violated IoT systems are so perilous since they can turn off a bulb

or a human hearth.

The security in IoT applications plays a very important role, it is impossible to propose a

unique solution to the security issues within the IoT, nevertheless an analysis of the common faults

can lead us to a better understanding of the IoT security requirements. IoT systems, as the

informatics systems, must guarantee the 3 security pillars: Confidentiality, Integrity and Availability.

However, in the IoT these concepts are wider because there are new actors as sensors and

actuators. Therefore, now the IoT stakeholders should think in the system security, human safety,

sensor integrity data, actuator authentication, etc. Once the IoT meaning is clear, it is time to think

8 Chapter 1 Introduction

about the security requirements, and the way to protect the IoT system against the most common

attacks.

There are many approaches which consider IoT security since different perspectives, the

security goals in the IoT depend on the security requirements of each system, the computational

power and the energy supply. Therefore, there are many security requirements within the IoT

universe, nonetheless in [10] a table of security requirements is given according to their security

infrastructure, the content of the table is shown below:

 System Dependability:

 Service Availability: The user should be able to invoke the service he is authorised to access

under all conditions

 Infrastructure Availability: The services provided by the infrastructure should always be

available, as their operation is critical to the operation of the IoT. Users should be able to

reach the infrastructure. The infrastructure services should be able to operate.

 Infrastructure Integrity: Infrastructure Services should operate properly according to their

design.

 Infrastructure Trust: The services provided by the infrastructure Services should be

trustworthy.

 Non-repudiation (Service -> User): Services should be accessible to Users that have the right

to access them.

 Accountability: Some services could be classified or critical for their provider and could

require Users to take responsibility of their action. On the other hand, Users might need

providers to take responsibility for the Services they provide, because relying on such

Services is critical for them.

 Communication Stack

 Service Layer

 Service Access Control/ Authorisation: Anonymous interactions shall be enabled, as well as

group.

 Service Authentication: Users must be able to authenticate Servers.

 Service reputation Metering: As there is a high chance of nodes being compromised due to

their physical availability to malicious users, a secondary mechanism for establishing trust

is needed.

9 Chapter 1 Introduction

 Service trust: Users must be able to authenticate.

 Network layer

 Network level Anonymisation: If proper countermeasures are not taken, even Users

employing Pseudonyms could be tracked by their network locator.

 Confidentiality: Packet exchange across the IoT is exposed to eavesdropping. In the frame

of their proposal (IoT-A) confidentiality is supported through encryption.

 User and Service Privacy

 User privacy protection when using infrastructure: The resolution Component should not

be able to derive information about the User or his behaviour from his interaction.

 User privacy protection when using Services: Invoked Service should not be able to derive

information about the User or his behaviour from his interaction

 Privacy protection of Service towards User: Users should not be able to derive private

information (status, position, ownership, etc.) about the subject providing the service by

invoking it.

In this proposal, they split the IoT environment in three categories: System Dependability,

Communication stack and User and Service privacy. For each one of these categories they find some

requirements related to the Confidentiality, Integrity and Availability, then they propose some

security components to target the security goals: AuthN (authentication module), AuthZ

(authorization module), IM (identity management), KEM (key exchange management) and TRA

(trust and reputation authority). Nevertheless, the IoT involves more security requirements, for

instance in many scenarios a tamper protection is needed or the authorisation not just for the

service layer but for the physical layer. In [11] some high level security requirements are given:

Resilience to attacks, data authentication, access control, client privacy, user identification, secure

storage, identity management, secure data communication, availability, secure network access,

secure content, secure execution environment and tamper resistance. In this approach, there are

more security considerations for IoT, for instance the different layer requirements, according to a

respective IoT architecture.

There are other approaches which have obtained IoT security requirements, some of them

depend on the IoT architecture viewing, such as the Industrial Internet Reference Architecture (IIRA)

[12]. They have four viewpoints: business viewpoint, usage viewpoint, functional viewpoint and

10 Chapter 1 Introduction

implementation viewpoint, they define the security according to their viewpoints. For the business

viewpoint, it is focused on the return on investment for security, in the context of other

considerations such as performance or consumer satisfaction. For the usage viewpoint, they

propose: security monitoring, security auditing and security policy management and cryptographic.

For the functional viewpoint, it includes common security functions: security audit, identify

verification, cryptographic support, data protection and privacy, authentication and identity

management and physical protection. In the document the authors mentioned that the previous

common security functions contribute to various system security capabilities: secured booting,

enhanced trust, enhanced privacy, early attack detection, secure management and automatic

threat. For the implementation viewpoint, they outline common security issues: end-to-end security

(protected device-to-device communications, confidentiality and privacy of data collected, remote

security management and monitoring). In order to achieve those security issues, the authors

propose the security by design: securing legacy systems (security gateways), security for

architectural patterns (in the three-tier architecture the end-points, information exchange,

management and control and data distribution and storage), end-point security (embed security

capabilities and policy enforcement directly) and information exchange security (authenticity,

confidentiality, integrity and non-repudiation of the communication).

IIRA addresses security requirements specifically for: endpoint security, communication

security, management and monitoring security and data distribution security. They describe the

next security issues to address in end-points:

 Secure boot attestation: Start from a known secure state, following only a prescribed boot

sequence of steps, with no modification of intended execution function.

o Remote attestation to the integrity of the boot sequence

o Policy to describe how to proceed when deviation from expected boot sequence is

detected.

 Separation of security agent

o Process-based security agent: The security agent resides in a process.

o Container-based security agent: Secured container within the end-point. Hardware

and software-enforced boundaries.

o Virtualisation-based security agent: Hypervisors in virtualised environment

(firewall, on-demand Virtual Private Network (VPN) connections, mutual

11 Chapter 1 Introduction

authentication, communication authorisation, data attestation, Intrusion Detection

system (IDS), Intrusion Prevention System (IPS), etc.).

o Gateway-based security agent: When security cannot be added to an end-point an

extern security Gateway is added.

 Endpoint identity: Endpoints and other controllable assets must have a unique identity, so

they can be managed and tracked via the secure agent. Ideally this identity is hardware-

embedded so that it cannot be altered.

 Endpoint attack response: It should defend itself, report the attack and reconfigure itself to

thwart the attack based on policy.

 Remote policy management: Defines the configuration of the security controls and

functions as a form of a security policy for each endpoint.

 Logging and event monitoring: The security agent monitors and records events as they occur

at the endpoint including events pertinent to security violation, user login/logout, data

access, configuration update, application execution and communication.

 Application whitelisting: Only known and authorised application code (whitelist). The

security management point should update the whitelist.

 Network whitelisting: Only a defined set of source/destination, port and protocol tuples is

allowed to communicate to/from the endpoint. The security management system may

update the network whitelist.

 Endpoint and configuration control to prevent unauthorised change to the endpoints.

 Dynamically deployed countermeasures: Deploy trusted new countermeasures and other

mitigating controls as part of the endpoint security policy.

 Remote and automated endpoint update: The security management system must be able

to remotely update the endpoint with trusted software updates via the secure agent

through an automated and secure process.

 Policy orchestration across multiple endpoints: Coordination of security policy across

multiple endpoints to enable secure, trusted operation workflow across the endpoints

 Peripheral devices management: Security policy concerning whether to allow a peripheral

to be connected to or disconnected from the endpoint.

 Endpoint storage management: Data storage and file system at an endpoint must be

managed based on security policy. The security management function includes file integrity

monitoring, file reputation tracking, data, file, file system or device-level encryption, file and

12 Chapter 1 Introduction

data access right management, remote access to file system, data loss prevention, and

alerting policy violations reporting.

 Access control: network access to endpoints must be controlled based on security policy

that allows connections required by the operations and deny all other connections.

 For the communication security, they regard the next points:

 Architectural considerations for information exchange security: When designing security

solutions, consideration must be given to requirements in confidentiality, integrity,

availability, scalability, resilience, interoperability and performance for both transport

layers.

 Security in request-response and publish-subscribe communications: As the protocols of

this pattern vary in degrees of support for security, they should be independently and

carefully evaluated with regard to confidentiality, integrity and availability requirements.

 Mutual authentication between endpoints: The security policy may specify the acceptable

authentication protocols and credentials to be used for authentication. Light-weight

protocols may be implemented in resource-constraint devices.

 Communication authorisation: Before granting access of any resource, authorisation must

be performed at the endpoint according to the security policy.

 Identity proxy/consolidation point: In the case when the endpoint and their authentications

cannot be achieved, these components may be proxied by an endpoint with capability that

meets the higher standard and capable of performing the proxy functions (security

gateway).

 User authentication and authorisation: User credentials can be used to identify the user of

the endpoint uniquely. The combination of endpoint and user access control can be used to

present a unique access profile to request access to resources at an endpoint.

 Encryption communication: Data exchange between endpoints over communication

channels must be encrypted with cryptographic keys of security strength and cipher suite

meeting the security policy requirements.

Management and Monitoring security involves these areas:

 Identity management: Hardware-backed identity is required to determine the identity of the

endpoint authoritatively. Keys and certificates should be stored in a hardware-secured

container. These hardware-secured containers generate asymmetric key pairs on chip and never

13 Chapter 1 Introduction

expose private keys outside of the container. They perform crypto-operations on-chip with the

private-keys. They export public keys to be distributed to other endpoint or likely signed into

PKI certificates by a certificate authority. These containers also perform other crypto-based

security operations such as attestation, signing and sealing on-chip.

 Provisioning and commissioning: An endpoint must be provisioned and commissioned securely

before it is allowed to participate in the system. This requires identity and credentials to be

generated, distributed and installed in the endpoints and registered with the security

management system.

 Security policy management: Policy creation, assignment and distribution. Policies are defined

on a security management system and communicated to endpoints via the secure agent.

 Endpoint activation management: It is the event where a new endpoint is recognised,

authenticated and then permitted to exchange data with other endpoints in the system.

 Credential management: Its lifecycle consists of credential provisioning/enrolment/recognition,

additional credential generation (particularly for temporary credentials), credential update and

credential revocation/de-recognition.

 Management console: It allows a human user interaction with the security management system.

 Situational awareness: Maintain awareness of situations in the network of endpoints in addition

patterns emerging a sequence of events can contribute to an understanding of the current

environment of the system.

 Remote update: Mechanism must be in place to automatically, securely and remotely update

software/firmware.

 Management and monitoring resiliency: Security management needs to manage and monitor

the system network especially when facing non-optimal network conditions such as when it is

under attack, degraded or damaged.

For data distribution and secure storage, they consider:

 Data security: In the case of data storage, sensitive data can be protected by employing data

encryption at the field, record, file, directory, file system or storage device level.

 Data Centric Policies: They include data security, privacy, integrity and ownership.

 Data Analysis and privacy: Data access policy may be provided to enforce fine-grained data

access rules.

14 Chapter 1 Introduction

 IT systems and the cloud: To protect the data, provenance information and privacy

requirements should be attached to it so that ownership and the custody chain for data records

can be maintained.

The work done in IIRA describes many security requirements in IoT systems and some

proposed architecture elements to target them. This work is very helpful because their perception

of the IoT is wider than other approaches, nevertheless some security requirements identified are

similar between them or with other approaches. Therefore, an analysis of each one of the

requirements offered by these approaches was done, in order to obtain general and encapsulated

security issues. Now, other approaches will be introduced to continue with the IoT security review.

Secure design requires establishing the relevant security concerns for endpoints, the

communication between them, the management of both the endpoints and the communication

mechanisms, and for processing and storing data.

If a system has flaws from its design, they can be exploited by attackers who will be able to

penetrate the system just applying common attacks using common tools. Therefore, the idea of

reducing the attack surface by design make sense since it will prevent attackers to easily infringe

the IoT system.

There are many domains in the IoT ecosystem, it would be impossible to propose a unique

IoT security model to cover all the IoT security requirements, for each one of these domains,

however a meta-model for IoT systems security would be able to help the IoT stakeholders to model

their particular IoT system with the appropriate IoT security requirements abstraction, it should be

time invariant and technology-independent.

Security in an IoT system should not be considered as an afterthought, it must be reviewed

from the planning and modelling stages of the system, that is, it must be an essential requirement

in any IoT system. The common aspects of security in IoT systems must be considered, for instance,

integrity of data and trust in services offering the data is crucial; furthermore, confidentiality of data

and privacy of users must be ensured. Another vital functionality of IoT is availability [13], this

security requirement is related to cybersecurity, but in IoT systems there are more assets.

Therefore, is more difficult to provide solutions to the availability requirement. In IoT there are other

security issues to consider, besides of the Internet security concerns, such as the physical security

of the hardware devices, sensors, actuators, etc. The sensors are in contact with the physical entity.

15 Chapter 1 Introduction

Therefore, in many scenarios the system interacts with them in a remote way, meaning that the

sensors are completely vulnerable, if there is not a countermeasure applied.

Hence, in IoT trusted devices, systems, infrastructure, users and applications are needed [14].

There are many proposals for IoT security, including frameworks such as the one described in [15]

where also an architecture is proposed describing three main agents: IoT Devices, IoT Broker and

IoT Certificate authority.

Since security is a fundamental fact in IoT systems, it has to be considered from the design

and modelling stages, for which there is no protocol, standard or tool available. Hence, the idea of

having security requirements considered within the system before implementing it is fundamental

to build a system without vulnerabilities and reliable. This model will comply with basic security

aspects such as availability, confidentiality and integrity, which will help to implement controls and

specific security mechanisms within each of the modules proposed in the abstract system.

This work focuses in the security conceptualisation within the IoT security design process,

specifically in the analysis stage, since the security concerns within an IoT system should not be

regarded as a final stage or when the system is about to be deployed as it is mentioned in [16].

Usually the idea of a model-based development is to build a model of a system with the aim to be

as close to human intuition as possible, this is the case for almost every time that an abstract

representation of the system functionality is obtained [17]. This system abstraction is generally

developed applying modelling languages instead of a natural language description, modelling

languages pursue a better understanding of the system. Therefore, those languages should provide

the security analysts and developers with a well-formed language to depict the system security

concerns in order to be considered from the IoT system conception.

Until now, we know the IoT environment, the security concerns within it and the necessity of

a model-driven approach which regards those security issues in to a system model. As it was

mentioned before the modelling languages are a very useful tool to abstract the system

characteristics along the analysis, design, and implementation stages of a lifecycle. Therefore, there

is need for a modelling language, modelling language extension or an abstraction mechanism to

abstract the security requirements within a human intuitive representation together with the

system model.

16 Chapter 1 Introduction

1.1.4 Model Based Systems Engineering and Lifecycle Development models

Model Based systems engineering (MBSE) refers to the practise of simplifying concepts and

relationships within graphical or mathematical models, it is a system abstraction which removes

unnecessary components in order to facilitate the understanding, to aid decision making, to

examine “what if” questions and control and predict events. MBSE replaces the document centric

approach which in several cases is still used in the industry. MBSE makes models instead of

documents, in that way the development teams can communicate and asses the impacts of changes

to the system.

There are several methodologies for the MBSE approach. In [18] a survey of such methodologies

can be found. The authors from [18] define methodology as a “collection of related processes,

methods and tool. A methodology is essentially a recipe and can be thought of as the application of

related processes, methods, and tools to a class of problems that all have something in common”.

There are three main lifecycles development models, these are:

 Royce’s waterfall model,

 Boehm’s spiral model

 Forsberg and Mog’s “Vee” model

Those three models are considered as the seminal model, on them several other lifecycle

development models are based. In Fig. 1 the stages of a waterfall model is depicted, these stages

are: assumptions, requirements, analysis, design and prototyping. The IoTsecM approach is

designed to contribute in the requirements and analysis stages, where the system conceptualisation

is achieved, and then the first scenarios and use cases are identified. Therefore, the IoTsecM

proposal helps for the security requirements identification and depicting within the analysis stage,

since the system design can be modelled.

17 Chapter 1 Introduction

Fig. 1 General Waterfall Lifecycle Development Model

1.2 PROBLEM STATEMENT

Security in IoT systems involves not only stolen information or encryption issues, there are many

new assets involved or even a blend of many domains assets of different industries that did not care

about information security before; for example, electro domestic industry, where they produced

new connected devices, but they did not consider information security in many cases. Therefore,

IoT has new challenges never seen before such as new attack surfaces, new scenarios and new

attackers that will exploit any vulnerability they find.

With the increasing number of stakeholders involved in IoT systems the attack surface is

growing up very fast, new motivated attackers will appear or are waiting the right moment to thwart

the different applications and systems in IoT. In IoT systems there are not just involved virtual

information or money, there are many new exploitable targets, such as health, houses or any “thing”

connected to the Internet. It implies new risks such as lights turned on without authorisation, open

doors, turn off cars, set on car false calls, calling to medical services, etc. The universe of possible

attacks is wider every day thus it is need new techniques in order to include security in the IoT

systems and applications. Although these techniques have to consider security from the analysis

stage, they have to adopt systems already built and be able to establish security according to

security requirements and threat analysis.

18 Chapter 1 Introduction

IoT involves experts in many areas from microcontrollers programmers to big data analysts,

so the designing process is not an easy job. In addition, there is not a security standard for IoT

systems such as ISO 27000 in informatics systems. There is a lack of standard protocols,

methodologies and models that supports all features that IoT systems require. One reason to

explain it, is that the IoT is a relatively new concept. Therefore, the efforts at this moment have been

focused on the new technology to realize the IoT but not much efforts have been directed towards

developing security tools to ensure the IoT environment.

It is known that security has always been indispensable in information systems, so it has been

covered from many angles, nevertheless the IoT involves new challenges in security requirements,

new threats, new risks and vulnerabilities that are always emerging. IoT developers normally are

focused on the system functionality without considering security aspects in any process of the

methodology (if it is the case) they are following. This can be for many reasons, for example IoT

developers usually are not experts in security, there is not a methodology totally oriented to

establish security in IoT systems and there is not modelling languages dedicated to security in IoT

systems. IoT has new actors involved as: sensors, actuators, devices, networks of devices, IoT

brokers, networks of sensors, etc.; hence, new processes for modelling them are essentials for

building new IoT systems.

The modelling process would be unthinkable without a modelling language. As it is known the

modelling language by default is the Unified Modelling Language (UML) which is very intuitive for

the human perception. Nowadays, there are some UML extensions which let designers cover

security requirements for information systems or even mechatronic systems but there is not any

UML extension for security in IoT systems or applications which can help designers and developers

to model the IoT system and the security controls and mechanisms within the architecture. So the

lack of IoT modelling with security is a problem because it propitiates security deficiencies from a

designing stage and even when the systems is already built.

Therefore, the problem identified is that the IoT systems need a new artifact to allow an

abstract representation of the security requirements since the analysis stage in a waterfall

development life cycle. UML and SysML are general modelling languages, however, currently they

are not able to depict the security domain-specific features, and therefore the proposed new

artefact could be a new UML/SysML extension to depict and model IoT security concerns within the

analysis stage.

19 Chapter 1 Introduction

Nowadays there are some UML/SysML extensions which let developers cover security requirements

for information systems, in particular in a design and deployment stages, nevertheless there is not

any UML/SysML extension to analyse IoT systems since an analysis stage within a Model Based

System Engineering approach (MBSE) based on a waterfall model development life cycle. Therefore,

the developers cannot model or depict the security mechanisms in the analysis stage of a MBSE

approach for each one of the architecture layers in the IoT system.

1.1. Justification

The emergence of a common security reference model for IoT systems can lead to a faster, more

focused development and to a better human perception of the trustworthiness of these systems.

These solutions can provide many advantages such as economics, new business models which can

leverage those technological solutions providing room for economic development.

This security analysis profile will permit the analysis in advance of necessities, vulnerabilities,

attacks and countermeasures, including the security relevant requirements tracking, architectures

and patterns. All the IoT security features included in a UML/SysML profile will help to mitigate the

security design vulnerabilities and also to regard the security requirements within the very well-

known UML/SysML diagrams.

 Hence, the proposal of this work is a UML/SysML profile that can be applied in any

UML/SysML tool. This profile is not just for the security concerns analysis, but it supplies traceable

links to the requirements, architectures, designs, models and code.

As it was mentioned before security is essential in IoT systems and new modelling strategies

have to be developed in order to cover all IoT security requirements. Although there are many new

approaches to model IoT and also new frameworks for security in IoT, there is not a syntax that

helps to aggregate security aspects to IoT modelling. This lack of security modelling tools for IoT

systems is the main concern of this thesis work. As a result of the research carried out, an

UML/SysML extension has been proposed that support IoT designers and developers during security

requirements consideration in their systems even if they are not experts in security topics.

20 Chapter 1 Introduction

Modelling languages have been used by methodologies, processes, methods, etc., to design

and enhance information systems in a systematic and ordered way. Among the different modelling

languages available, UML is the most used one, it is very intuitive, and it has a simple syntax which

makes it the most used modelling language. According to [19], models have views and diagrams to

show subsets of engineering data; good diagrams have singular purposes and answer questions,

models have scope, purpose accuracy and fidelity, besides models are verifiable and they are

engineering data. Hence, an UML extension must comply with that set of features, so it will support

good modelling, this is the development of a semantically correct set of engineering data of relevant

systems and their properties.

An UML extension for model security requirements in an IoT modelling process will permit

designers develop a security layer in their systems and consider security requirements that actual

security extensions such as [20] do not cover, for instance sensor authentication, or actuator

authorisation, IoT device tampering protection, etc. This security issues are very specific to IoT

systems and applications. Therefore, an UML extension is designed to guarantee the inclusion of

security requirements along different IoT tiers according to different IoT architectures, besides it

also intends to model aspects related to the Internet security.

Within the specification of UML 2 [21] there are some reasons why UML can be extended:

 To give a terminology that is adapted to a particular platform or domain (for example

specific terminology like Home interfaces, Enterprise Java Beans, and Archives).

 To give a syntax for construct concepts that do not have a notation (such as in the case of

Actions).

 To give a different notation for already existing symbols (such as being able to use a picture

of a computer instead of the ordinary Node symbol to represent a computer in a network).

 To add additional semantics to UML or specific meta-classes.

 To add stereotypes that do not exist in UML (such as defining a timer, clock, or continuous

time).

 To add constraints that restrict the way UML’s constructs are used (such as disallowing

multiple inheritance).

21 Chapter 1 Introduction

1.3 HYPOTHESIS

A UML/SysML extension for IoT security requirements analysis and modelling, will allow the analysts

to depict the security concerns from the start of the Model Based System Engineering process based

on the waterfall development life cycle. Thus, the countermeasures to protect the IoT system assets

will be graphically represented and modelled. This UML/SysML extension will allow to the already

built systems to be modelled adding the security mechanisms. This extension will cover the gap

between the human conceptualisation and automation models.

1.4 OBJECTIVES

1.4.1 General objective

To design an UML/SysML extension for the Internet of Things systems security requirements

depicting, within the analysis stage in a Model Based System Engineering (MBSE) methodology, in

particular on such stages in the waterfall development life cycle. This will be achieved applying the

existing UML extension mechanisms such as stereotypes, constraints and tags, besides of proposing

a nomenclature which aims at fulfilling the IoT security requirements. The UML/SysML extension

will allow the analysts to include and represent security countermeasures against possible threats

since the designing of any IoT system.

1.4.2 Particular objectives

 To review the IoT UM/SysML extensions.

 To analyse the general IoT security requirements.

 To review the UML/SysML extensions state of the art for IoT security.

 To propose a suitable nomenclature to depict in an abstract way the IoT security

requirements.

 To design an UML/SysML extension according to the nomenclature and the existing

diagrams as well as the UML extension mechanisms.

22 Chapter 1 Introduction

 To apply the defined UML/SysML extension mechanisms to extend the UML/SysML

semantics to represent the IoT security requirements.

 To propose a UML/SysML extension for IoT security requirements depicting.

 To verify the applicability of the UML/SysML extension.

1.5 SCOPE OF WORK

This research work addresses the design of an UML/SysML extension, which covers the IoT security

requirements. The proposal described along this thesis aims at depicting the security requirements

within the analysis stage in a waterfall development life cycle of a MBSE approach. This means that

the limit for this research work are the security requirements for IoT systems and UML/SysML

notation. The UML/SysML extension mechanisms were applied in order to design a profile to depict

the security requirements within the analysis stage. It does note, directly, overcome the security

issues for other domains or technologies, nevertheless it may be applied in other domains if the

developers find it functional. Although this proposal is not, necessarily, applicable for other stages

out of the analysis stage in the waterfall development life cycle, or any other development life cycle,

it can be applied in other models, methods or life cycles. The IoTsecM proposal was applied in two

study cases, hence the applicability of IoTsecM depends on the requirements of future developers

and their modelling and analysis skills.

1.6 CONTRIBUTIONS

The following list summarizes the main contributions of this work:

 IoT security requirements compilation and analysis.

 A nomenclature which encapsulates and abstracts the IoT security requirements.

 An UML/SysML extension for security modelling in IoT systems.

 Application of the proposed UML/SysML extension within two real-life projects.

23 Chapter 1 Introduction

1.7 RESEARCH AND DEVELOPMENT METHOD USED

In this research, in order to obtain the UML/SysML extension a documental research method was

followed, since a suitable compilation of the security requirements within the IoT was realised, then

that information was analysed and synthetized, it is evident that a deduction process preceded it.

Then an experimental method was applied, once the UML/SysML extension was already finalised, it

was exposed to two main experiments (real-life experiments) where the extension functionality and

applicability were verified, this means that the hypothesis proposed at the beginning was

corroborated.

1.8 ORGANISATION OF THE THESIS

In chapter 1 a brief background is introduced which includes IoT definition, IoT constraints and

challenges and security in IoT. The problem statement, hypothesis, objectives, scope of the work,

contributions and organisation of the thesis sections are included in the chapter 1 as well. In chapter

2 a revision of the state of the art is introduced, in particular a review of the modelling languages

specifically designed for IoT systems and UML extension for security concerns modelling. The

theoretical framework is described in chapter 3, where the UML is generally described as well as the

UML extensions. In chapter 4 the methodology followed, and the research carried out in order to

develop an UML/SysML extension for security requirements modelling is presented. This includes a

description of the actors, the nomenclature proposed and the extended diagrams. Once the

extension has been explained, in the chapter 5 two study cases applying the developed UML/SysML

extension are presented. In chapter 6 the conclusions and future work and research outputs are

described.

24 Chapter 1 Introduction

25 Chapter 2 State of the Art

2 STATE OF THE ART

In this section the state of the art is introduced, meaning that the last proposed works related to

the thesis topic are addressed and explained. Hence the intention of this chapter is to provide a

solid base for the research development, also as to introduce the different perspectives in which IoT

systems and their security requirements have been modeled. Once the main approaches have been

reviewed, a new way to model the security concerns within IoT systems can be proposed.

The structure of this chapter is split in two main subchapters; the first one is entitled “IoT

modelling”, corresponding to section 2.1, which discloses the current UML extension to model IoT

systems; the second part, section 2.2, introduces security related UML extensions.

2.1 IOT MODELLING

2.1.1 UML4IoT

The approach named UML4IoT [22] integrates trends in Cyber Physical Systems (CPS) and IoT. They

adopt the Open Mobile Alliance (OMA) LWM2M (Light Weight Machine to Machine) application

protocol [23], and the smart objects defined by the Internet Protocol for Smart Objects (IPSO)

Alliance [24].

The motivation of their proposal is that the automation engineers are not necessarily involved with

the Representational State Transfer (REST) architectural paradigm and the LWM2M protocol which

the authors claim are developed for IoT systems. Their approach automates the generation process

of the IoTwrapper which is a transformation of the cyber-physical component to an IoT-compliant

component, i.e., to an Industrial Automation Thing. The IoT wrapper is a layer that converts the

Object Oriented (OO) API to a RESTful one. Therefore, they propose the automation of that layer.

In order to attain that goal they followed two methods, the first one is based on the UML design

specification of the cyber-physical component and the second one is based on the source code; we

will focus on the first one since it is more related to this work.

26 Chapter 2 State of the Art

The UML4IoT approach has three main contributions:

 The definition of a UML profile for the exploitation of IoT.

 The automation of the generation process of the cyber-physical system IoTwrapper.

 A lightweight prototype implementation of the OMA LWM2M protocol based on

metaprogramming.

The whole LWM2M can be found in [23], nevertheless some general concepts need to be

introduced. The LWM2M is an application layer communication protocol which decouple system

components adopting a plug and play approach. LWM2M protocol defines the LWM2M server and

LWM2M client which is located in a LWM2M device. It is defined on top of the Constrained

Application Protocol (CoAP) [25] and the datagram transport layer security (DTLS) may be used

when it is required. The OMA LWM2M defines the protocol between the LWM2M client and the

LWM2M server, it defines five interfaces between them:

 Bootstrap

 Client registration

 Device management

 Service enablement

 Information reporting

Once these concepts were introduced, we can delve more into the UML4IoT approach. The authors

aim to embed the LWM2M client in the cyber-physical component, this in order to support general

functionalities such as discovery and registration. In their work the authors indicated that an

LWM2M object model is not appropriate to define the cyber-physical component structure, thus it

is normally modelled applying UML. As it was mentioned earlier, the authors proposed a UML profile

to map a UML representation to a LWM2M compliant REST interface allowing the task automation,

allowing the developers to design the cyber-physical component using UML. In Fig. 2 the UML4IoT

profile core part is shown. The fields and operations of the cyber-physical component are handled

as resources which are defined as stereotypes (the meaning of the extension mechanism named

stereotype is explained in section 3.2.1); the resource specialisations such as OperationResource,

Instance Resource and ObservableResource are used to mark information of the cyber-physical

component. They extended meta-classes, such as Class, Property and Operation.

27 Chapter 2 State of the Art

The resources on the OMA LWM2M are organised into objects, using the object type to define

the logical organisation of resources, in order to depict this concept they use the ObcjectType and

Resource stereotypes as well as their associations, as it is captured in Fig. 2. The ObjectType is

defined as a composition of LWM2M resources and it is thought as the cyber-physical component

cyber part. The resources are modelled by the Resource stereotype, it is the generalisation of three

other stereotypes, i.e., the OperationResource (UML Operation metaclass extension), the

InstanceResource (UML Porperty metaclass extension), and the ObservableResource (UML

Operation metaclass extension). The capability to have multiple instances in the Resource or Object

is captured by the stereotypes ObjectInstance and ResourceInstance.

Fig. 2 UML4IoT Profile taken from [22].

For the usability validation the authors used a prototype implementation of the myLiqueur

production laboratory system [26], which is, roughly, an IoT system which allows the users to custom

28 Chapter 2 State of the Art

their liqueur, clearly by a remote way using an smartphone app. In Fig. 3 it is shown part of the class

diagram from the system cyber part. The interface references as heater attribute are marked with

the <<ObjectInstance>> stereotype, the classes that implement their types are marked with the

<<ObjectType>> stereotype. On the other hand, all the methods are depicted applying the

<<OperationResource>> stereotype.

Fig. 3 The cyber interface of the SmartSilo marked with model elements of the UML4IoT profile [22]

In the conclusions of the work the authors mentioned that the adoption of the IoT imposes a

paradigm deviation for the automation system developer and it complicates the development

process, because of that they proposed UML4IoT. This UML profile eases the conversion process

from a LWM2M protocol into an IoT environment. However, it is mainly thought to systems already

built and not for systems that are about to be developed. Notwithstanding, as they are using

LWM2M protocol, it includes, by its own nature, the very known MQTT and CoAP protocols, which

are the leader IoT protocols, this fact makes this profile very useful. On the other hand, and

returning to the security requirements in the IoT, as in many systems it continues being an after-

thought, since it is not regarded within the UML4IoT profile, thus our proposal would be very easily

incorporated within the UML4IoT as it was thought for. The approach proposed in this work is a

security layer which allows the developers to design the security requirements within an IoT

environment. For our work aim, this proposal may be used or not, it helps the developers to improve

their understanding related to IoT and they save time. Hence, the UML4IoT approach would aid the

analysis and design stages of an ioT system, but it will be incomplete without a threat analysis and

without taking into account the security IoT system security requirements.

29 Chapter 2 State of the Art

2.1.2 IoT-A

IoT-A [27] is a reference model for the IoT domain proposal, developed with the intention of

promoting a common understanding of the IoT basis. In this approach a reference architecture is

proposed as well, it describes essential building blocks to deal with conflicting requirements

considering performance, security, functionality and deployment.

The IoT Reference Model proposed is a top-level description which is the highest abstraction

level for the definition of the Architectural Reference Model. Three models are included inside of

this model:

 IoT Domain Model

 IoT Information Model

 IoT communication Model

The IoT Domain Model defines relationships between concepts, for instance “Services expose

Resources”. They provided a common lexicon and taxonomy of the IoT domain. The goal behind

the IoT Domain Model is to capture the main notions and their relationships. The generic scenario

regarded in the IoT-A proposal is that of a generic User (human or some kind of digital artefact)

which has to interact with a Physical Entity (PE) in the physical world. The PE has its digital

representation that they call Virtual Entity (VE) (3D models, data bases, avatars, etc.). The IoT-A

approach considers an abstract concept of “thing” such as PE + VE. The relation between VE and PE

is usually achieved by embedding VE into, by attaching to, or by simply placing it in close vicinity of

the PE. The devices that mediate the relation between the PE and VE are technical artefacts for

bridging from the real world to the virtual world, it is done by sensing, actuating, monitoring,

computation, storage and processing capabilities. Nonetheless, this definition of device is a bit

confusing, since current devices are contemplated as the processing artefact which receive the

sensor data or which are able to send data directly to the PE. In an IoT environment the next devices

are regarded:

 Sensors: Monitor the PE and they provide information, knowledge, or data about the PE.

They can be attached, placed on the environment or embedded into the PE.

30 Chapter 2 State of the Art

 Tags: Are normally attached to the PE, they are used to identify the PE. The identification

process is done by a sensor.

 Actuators: They act on the PE, this means that they are able to modify the physical state of

the PE.

In the IoT-A the resources are defined as software components that provide data from or are

used in the actuation on PEs, and there are identified two resources types: On-Device Resources

(hosted on devices) and Network Resources. A service provides an open interface, where the

functionalities are offered, making the resources accessible.

In Fig. 4 the IoT Domain Model is depicted using the UML class diagram. As it can be seen in the

figure, hardware is displayed in blue, yellow is used for the animated objects such as humans,

animals, etc., green is used for the software elements and the issues that are not clearly classifiable

are shown in brown. The User virtually interacts with the PE, therefore, it (“he” is not used since the

user can be an electronic artefact) invokes one or more Services which is a software and exposes

zero or more Resources that are a generalisation of On-Device Resources and Network Resources.

The On-Device Resources are hosted by the Device which is a generalisation of Tags, Sensors and

Actuators. This approach characterises, in a UML representation, which by its essence is very

intuitive, the IoT Domain Model. It helps to clarify the IoT conceptualisation, the relationships

between the different agents and although it is not introduced as an UML profile it might be and it

would be very convenient, because it would turn it into a metamodel, which would help the specific

IoT systems conceptualisation and modelling.

31 Chapter 2 State of the Art

Fig. 4 UML representation of the IoT Domain Model taken from [27]

In IoT-A project the security is regarded, they consider general security modules which are

adequate as a first approach to the security issues within the IoT systems, nevertheless, as it was

mentioned in the background and will be delver in 2.2.2 section, it does not cover the whole IoT

security requirements.

32 Chapter 2 State of the Art

2.1.3 IoTLite

The approach referred to as IoTLite is an instantiation of the semantic sensor network (SSN)

ontology [28] to describe key IoT concepts allowing interoperability and discovery of sensory data

in heterogeneous IoT platforms by a lightweight semantics in the context of data analytics. In this

approach the authors have ten rules for good and scalable semantic model design. They proposed

guidelines for developing scalable and reusable semantic models in the IoT. They are much focused

on the relatively fast annotation and processing time. The IoTLite proposal can be extended,

depending on the applications, different semantic modules can be added to provide additional

domain and application specific concepts and relationships.

The guidelines that the IoTLite authors propose for developing scalable ontologies are:

 Design for large-scale.

 Think of who will use the semantics and design for their needs.

 Provide means to update and change the semantic annotations.

 Create tools for validation and interoperability testing.

 Create taxonomies and vocabularies.

 Re-use existing models.

 Link data and descriptions to other existing resources.

 Define rules and/or best practices for providing the values for each property.

 Keep it simple.

 Create affective methods, tools and APIs to handle and process the semantics.

They tried to follow each one of the rules they proposed in their proposal. For instance they

created a taxonomy of quantity kinds and units.

The three core concepts proposed in the IoTLite approach are: iot-lite:object, ssn:Device and iot-

lite:Service, these are depicted in Fig. 5. Those concepts are necessary in any ontology describing

IoT. In IoT-lite three classes of Devices are considered: ssn:Sensor, iot-lite:Actuator and iot-lite:Tag,

these classes coincide with the IoT-A classification.

33 Chapter 2 State of the Art

Fig. 5 An overview of the IoT-lite model, taken from [28].

In the IoTLite proposal the security concerns are not considered, it could be because the

objective of the proposal is to create a lightweight IoT ontology which is normally opposite to the

security concerns addressing. This is because the security mechanisms and countermeasures add

processing power, latency and more complex models which will not comply with the rules they

proposed. Nevertheless, if the security is crucial for the IoT system then its analysis and targeting

may be added to the IoTLite approach.

2.2 UML/SYSML SECURITY EXTENSIONS

In this section the state of the art about the UML and SysML extensions is introduced. The extensions

analysed are: UMLsec, SysMLsec, SecureUML, IoT-A and the IBM Fault Tree Analysis.

2.2.1 UMLsec

The UMLsec approach [17] is a UML extension to model computer system security properties,

it is based on a formal semantics. UMLsec aims to support secure system development, in particular

through the following goals in an already modelled system (using UML), UMLsec should be able to

automatically evaluate it for security-related vulnerabilities in the design.

34 Chapter 2 State of the Art

 The methodology should be available to developers not specialised in security.

 Enable the user to define the security features and properties unambiguously.

 To model security from early design phases.

 Different abstraction levels, since security might be violated on different level.

 UMLsec should be enabled to make use of established rules of prudent security engineering.

In order to target those objectives, the authors followed the next notational features:

 Basis security requirements such as secrecy and integrity are integrated into their language.

 Consider threat scenarios depending on the adversary strengths.

 Common security concepts.

 Common security mechanisms like access control are included in the notation.

 Cryptographic primitives are defined at an appropriate level of abstraction.

 Physical security

 Security management

 Domain-specific extensions

UMLsec defines precise semantics for security, using UML Machines that allows construction of

a single formal description for the system model which includes information from all diagrams and

all abstraction layers.

For the UML extension, they focus on the general security properties, those that have a

comparatively intuitive and universally applicable formalisation, the aim is to provide the developers

with notational elements to depict the most relevant security concerns. In UMLsec stereotypes, tags

values and constraints UML extension mechanisms are applied, the core extensions are twenty-one

stereotypes which are used to define data security requirements on model elements. The UMLsec

stereotypes are shown below, nevertheless there is not a graphic representation within a UML

package diagram.

35 Chapter 2 State of the Art

Table 1 UMLsec Stereotypes:

Stereotype Base Class Tags Constraints Description

fair exchange subsystem start, stop,

adversary

After start

eventually reach

stop

Enforce fair

exchange

provable subsystem action, cert,

adversary

Action is non-

deniable

Non-repudiation

requirement

rbac subsystem protected, role,

right

Only permitted

activities

executed

Enforces role-

based access

control

Internet link Internet

connection

encrypted link Encrypted

connection

LAN link LAN connection

wire link Wire

smart card node Smart card node

POS device node POS device

issuer links node Issuer node

secure links subsystem adversary Dependency

security matched

by links

Enforces secure

communication

links

secrecy dependency Assume secrecy

integrity dependency Assume integrity

high dependency High sensitivity

secure

dependency

subsystem <<call>>,

<<send>>

respect data

security

Structural

interaction data

security

Critical object,

subsystem

secrecy,

integrity,

 Critical object

36 Chapter 2 State of the Art

authenticity,

high, fresh

no down-flow subsystem Prevents down-

flow

Information flow

condition

no up-flow subsystem Prevents up-flow Information flow

condition

data security subsystem adversary,

integrity

Provides secrecy,

integrity,

authenticity,

freshness

Basic datasec

requirements

Guarded access subsystem Guarded objects

accessed

through guards

Access control

using guard

objects

guarded object guard Guarded object

As it can be seen there are different abstract levels, for instance the <<secure links>> stereotype

refers to the level of abstract syntax whereas <<no down-flow>> refers to the formal semantic. A

brief summary of the UMLsec stereotypes is given below, where the main function of each

stereotype is described.

<<fair exchange>> stereotype tries to prevent cheating in any transaction, it is a subsystem hence it

can be depicted using use case diagrams or activity diagrams (where the tags, {start} and {stop}, are

used) applying the stereotype in the subsystem name.

<<provable >> stereotype is a subsystem as well, it has associated tags {actions}, {cert} and

{adversary}, it means that given an expression in {cert}, an action in {action} can be performed given

an adversary type in {adversary}, the certificate in {cert} is assumed to be unique for each subsystem

instance.

<<rbac>> stereotype is a subsystem containing an activity diagram enforces role-based access

control, thus it is not included any other authentication process such as attribute-based access

control hence a more abstract authentication stereotyped is required, more information about the

<<rbac>> tags can be found in [29].

37 Chapter 2 State of the Art

 <<Internet>>, <<encrypted>>, <<LAN>>, <<wire>>, <<smart card>>, <<POS device>> and <<issuer

node>> stereotypes are applied on links in deployment diagrams, they denote the communication

kind links, although those links stereotypes are very useful when designing the system architecture,

they are not completely related to security, since they do not mention for instance secure

communication, besides they do not cover the whole IoT environment since there are not different

layers communication consideration, such as links between sensors, sensor-device, etc. where new

technologies are needed (Zigbee, Bluetooth, etc).

<<secure links>> stereotype is used to ensure that security requirements on the communication are

met by the physical layer.

<<secrecy>>, <<integrity>> and <<high>> stereotypes may label dependencies in static structure or

component diagrams, they depict the respective security requirements. <<secure dependency>> is

used for subsystems containing static structure diagrams, this stereotype ensures that for the

<<call>> or <<send>> dependency from an object C to an object interface D, then the message

appears in the tag {secrecy} in the object C if and only if it does do in D.

<<critical>> stereotype labels subsystem instances which contains critical data, using the {secrecy},

{integrity}, {authenticity}, {fresh} and {high} that depict the security requirements. <<no down-

flow>>, <<no up_flow>> stereotype enforces secure information flow, it is the UML machine that

prevents down-flow (resp. up-flow). <<data security>> stereotype respects the data security

requirements given by the stereotype <<critical>>.

<<guarded access>> stereotype means that each object with the stereotype can only be accessed

through the objects specified by the tag {guard}. <<guarded>> stereotype labels objects that are

supposed to be guarded.

The UMLsec approach uses the UML extension mechanisms to consider security requirements

in the model system, besides of providing natural language description and mathematical language

definition. Nonetheless, there are some issues about the UMLsec proposal, it is no thought for IoT

systems, which makes it incomplete since it does not consider physical tamper protection, new

communication protocols, new technologies, etc., and in IoT systems there is a wider attack surface.

There are not any new extension within the UML use case diagram which helps the developers to

include security requirements in the analysis stage, they give as a fact that the security requirements

are known, which is not always the case.

38 Chapter 2 State of the Art

2.2.2 Fault Tree Analysis (FTA), IBM

The IBM FTA proposal [19] is a UML extension to model faults and risks in systems, it was firstly

proposed in the year 2010, but it was reintroduce in 2016 with the IoT trend. The IBM FTA

proponents argue that UML is a general modelling language that can be extended to model

metadata beyond standard usage. Their purpose is to enable upfront analysis of assets, security

needs, vulnerabilities, attacks and countermeasures including the ability to link to security-relevant

requirements, architectures and design patterns.

The FTA Profile has the following views:

 FTA diagram

 Safety Analysis Diagram (SAD)

 Hazard table view

 Failure Means and Effect Analysis (FMEA) table view

 Fault table view

 Fault- Requirement Matrix view

 Fault – Design Elements Matrix views

UML allows symbols to depict the stereotypes in their extensions, thus in IBM FTA they

propose symbols for: <<NormalEvent>>, <<HazardEvent>>, <<BasicFault>>,

<<UndevelopedFault>>, <<RequiredCondition>>, <<ResultingCondition>> and <<Hazard>>. All

these symbols are shown in Fig. 6. They use logical operators such as: AND, OR, NOT, Transfer

Operator, NAND, NOR and XOR, those symbols are depicted in Fig. 6 as well.

The key elements in the IBM FTA metamodel are as follows [30]:

 Hazard: (stereotype of class) it is a condition that will lead to an accident or loss.

 Fault: (stereotype of class) are usually the bottom terminal elements in an FTA and it is the

non-conformance of an element to its specification or expectation.

 Resulting condition: (stereotype of class) it is the resulting outcome from a combination of

faults and conditions.

39 Chapter 2 State of the Art

 Required condition: (stereotype of class) a condition required for the fault to interact.

 Logical operator: (stereotype of class) it does not have semantics by its own, nonetheless it

is applied as a connector.

 Logic flow: (stereotype of flow) it is the connection between a fault, condition or hazard and

a logical operator. It can be an input or an output.

 Fault source: (stereotype of class) a normal UML element that could manifest a fault.

 Safety measure: (stereotype of class) a normal UML element that mitigate a fault.

 Manifest relation: (stereotype of dependency) it is a relationship from a fault to a fault

source.

 Detect relation: (stereotype of dependency) it is a relation from a fault or hazard to a safety

measure which can detect when a fault occurs.

 Extenuates relation: (stereotype of dependency) a relation from a fault or hazard to a safety

measure that reduces the likelihood of the hazard or fault.

 Trace to requirement: (stereotype of dependency) it is a relation from a fault or hazard to a

requirement.

40 Chapter 2 State of the Art

Fig. 6 IBM FTA symbols, taken from [19]

Every diagram proposed within the UML profile has a particular aim, the FTA is a fault tree

where the Hazard is located as the tree root, and all the possible ways to achieve that Hazard or at

least the known and logical are depicted as a flow and composition of logical operators. The SAD

diagram is in the IBM FTA authors words “like a Fault Tree Analysis (FTA) but for security, rather

than for safety”, so it tries to find the relation between assets, attack, vulnerabilities and security

violations. As the author mentioned, the approach permits reasoning about what kind of security is

needed, how many countermeasures are needed, and it allows a risk assessment. Hence, the

approach looks very attractive in a first view, it relates countermeasures, threats and vulnerabilities.

However, it is a system-independent analysis, thus it does not include system elements within the

SAD diagram, which is a fundamental concern for the system conceptualisation and to analyse the

system architecture. This is relevant in the IoT domain where many layers can be found also as

constrained actors which may not be able to implement a too robust security mechanism. In Fig. 7

there is an example of the SAD diagram where a countermeasure blocks a threat and the <<asset>>,

<<security violation>>, <<vulnerability>>, <<resulting condition>>, <<countermeasure>>,

<<counteracts>> and <<requiredCondition>> stereotypes are used. The symbols are very intuitive,

41 Chapter 2 State of the Art

nevertheless the blue colour in the <<threat>> symbol is not clear, as well as the red colour in the

<<counteracts>>.

Fig. 7 IBM SAD example, taken from [19].

42 Chapter 2 State of the Art

2.2.3 SecureUML

SecureUML [31] is an UML extension proposed to model RBAC which is a model for access control

of users and their privileges are decoupled by roles, it is an authorisation process..

The SecureUML approach is defined as an extension of the UML metamodel (SecureUML

metamodel), they depict the RBAC concepts directly as metamodel types. SecureUML introduces

new metamodel types, User, Role and Permission, and relations between them, see Fig. 8.

Additionally, in their approach the authors introduced the type ResourceSet that depicts a user

defined set of model elements. A Permission is a relation object which connects a ModelElement or

a ResourceSet to a role and its semantics is defined by the ActionType elements that represent a

class of security important operations on a protected resource. The available action types can be

defined using ResourceType elements which determine all action types available for a specific

metamodel type. The attribute baseClass represents the connection to the metamodel type. An

AuthorisationConstraint is a part of the access control policy of an application.

Fig. 8 SecureUML Metamodel, taken from [31].

SecureUML is focused on the access control RBAC, according with [32], although SecureUML

only focus on the solution domain and not in the methodological level. The strong feature of

SecureUML is the explicit definition of permissions. This approach is applicable for class diagrams,

43 Chapter 2 State of the Art

nevertheless it just covers the RBAC solution, it does not have a threat analysis or something similar

and hence it is a UML extension (even when they call themselves UML dialect) that is useful to model

RBAC but no other security requirements within a system, besides it does not consider IoT systems

threats or vulnerabilities.

2.2.4 SysMLsec

SysMLsec [33] is a SysML extension to depict security and safety concerns and attack trees [34]

within a SysML environment. It guides and increases the potential for collaboration between system

engineers and security experts. Besides, the approach provides detailed representations of the

security threats and security requirements. The SysMLsec methodology adopts a three-phase

approach: analysis, design and validation, such as a common life-cycle. Nonetheless, this approach

regards security concerns along every stage, allowing from the analysis stage, to introduce security

countermeasures into the system.

It is not clear the extension process followed by the SysMLsec proponents in order to achieve their

approach. Therefore, the system security analysis and design is restricted to the examples they show

and the tool they developed (Ttool [35]).

The security requirements are depicted in a SysML requirements diagram using the <<Security

Requirement>>, in Fig. 9 there is an example of one diagram.

Fig. 9 SysMLSec security requirements example, taken from [33].

44 Chapter 2 State of the Art

The attacks are regarded in a SysML block diagram, it can be deduced that they propose some

stereotypes, such as <<AFTER>>, <<OR>> and <<attack>>. The idea of the attack graph is that an

attacker tries to violate the system following some steps or subattacks, SysMLSec proposes to order

those diagrams sequentially applying the <<AFTER>> stereotype which is something that not

appears directly in other approaches such as the presented in [36].

The SysMLsec design is made upon SysML block and state machine diagrams, formally defined

in pi-calculus (a process algebra). SysMLsec defines cryptographic blocks (“crypto block”) which

include a set of cryptographic methods that can be used in the state machines.

2.2.5 IoT-A security model

As it was mentioned in section 1.1.3, the IoT-A proposal did a very large study about the security

necessities in the IoT, the approach gathered a set of general requirements [10]. One of the aims

of the IoT-A document was to address the security goals which the infrastructure needs to handle.

As part of the IoT-A proposal a security model is included, nevertheless the security components

they proposed, as it was described earlier, do not cover the IoT universe. Their work is a benchmark

for our work, where the security analysis done by them is reapplied in a more reachable and

adequate model, extending the UML, as will be introduce in chapter 4.

The security components are the classification results of the analysis done about the IoT

security goals (section 1.1.3) and some functionalities where identified. Those functionalities were

grouped into five security components. In Table 2 the security components component

functionality and the security goals targeted are depicted.

Table 2 IoT-A components [10].

Component name and short

name

Component functionality Security goals targeted

AuthZ (Authorization) Access control on services Service access control

Confidentiality (data)

Integrity (data)

45 Chapter 2 State of the Art

Access control on resolution

infrastructure

Service privacy

Service availability

AuthN (Authentication) Authentication of service

users

Authentication

Accountability

IM (Identity Management) Management of Identities,

Pseudonyms and related

access policies

User privacy

Service privacy

KEM (Key Exchange and

Management)

Exchange of cryptographic

keys

Confidentiality (communication)

Integrity (communication)

TRA (Trust & Reputation) Collecting user reputation

scores and calculating

service trust levels

Service reputation metering

Service trust

As it can be seen from Table 2, the IoT-A proposal applies not just to IoT systems but to

informatics systems in a REST architecture. However, the IoT-A approach develops models for each

one of the components they proposed, therefore those models need to be in a level down in order

to transform them into IoT system architectures. Here is where IoT-A does not comply utterly, since

they did not regard any modelling language for the security components. Therefore, it would be

hard to instantiate the security components they proposed.

The state of the art approaches include UML extensions for the IoT and security UML

extensions for Informatics systems, all those approaches represent the last works related to this

proposal, the issues within each proposal were already discussed, besides of identifying the goals

to address in IoTsecM, the state of the art helped to see the procedures followed to cover the UML

extensions and profile proposition and the security related extensions as well.

46 Chapter 3 Theoretical Framework

3 THEORETICAL FRAMEWORK

3.1 UNIFIED MODELLING LANGUAGE

The notations allow to conceptualise complex ideas, the Real-life projects normally involve many

people even around the world with different time zones, languages and culture etc. Therefore, the

precision and clarity of the systems notation is fundamental for a good understanding between the

individuals. A well-defined semantics allows good communication, so it can be well understood by

the project participants.

A model is the abstraction of the features or behaviour of the thing being modelled, it gets

the relevant details and depict them in a convenient way for a certain point of view and for a certain

purpose. For a system, the model can depict its properties, behaviour or architecture.

The Unified Modelling Language (UML) [37] is a graphical language which is the de facto modelling

language in industry, it was obtained according to their proponents: Grady Booch, Ivar Jacobson and

Jim Rumbaugh. UML allows modelling, constructing and documenting the software elements of a

system, it is mainly used to model object-oriented systems. However, the flexibility of the UML

diagrams allows many other domains to be modelled with it. Modelling with UML has several

advantages, it is precisely defined, there is a large number of developers trained in UML, and there

are many tools to draw the UML diagrams. Hence, UML is a relevant modelling language largely

used nowadays.

A UML model has three main categories:

 Classifiers: Describes a set of objects.

 Events: Describes a set of possible occurrences.

 Behaviours: Describes a set of possible executions.

In the UML specification [37] it is stated that UML models do not contain objects, occurrences,

or executions of the domain being modelled. On the other hand, UML does have modelling

constructs for directly modelling individuals.

47 Chapter 3 Theoretical Framework

The system development focuses on three different systems models:

 Functional model: It is depicted in use case diagrams.

 Object model: Class diagrams, system structure.

 Dynamic model: Sequence diagrams, state diagrams, activity diagrams.

UML diagrams describe different system attributes or behaviour, in the last UML version (2.5)

there are many diagrams which will be very briefly introduced below and are classified and displayed

in Fig. 10 UML 2.5 diagrams, adapted from [38]. Moreover, the reader can find a lot of information

about the diagrams features on the web, books, scientific papers, and in the UML specification.

UML 2.5 Diagrams

Structure Diagram

Class Diagram

Object Diagram

Composite Structure Diagram

Component Diagram

Deployment Diagram

Profile Diagram

Behaviour Diagram

Use Case Diagram

Activity Diagram

State Machine Diagram

Interaction Diagram

Sequence Diagram

Communication Diagram

Timing Diagram

Interaction Overview Diagram

State Machine Diagram

State Machine Diagram

Information Flow Diagram

Package DiagramModel Diagram

Internal Structure Diagram

Collaborative Use Diagram

Manifestation Diagram

Network Architecture Diagram

Fig. 10 UML 2.5 diagrams, adapted from [38].

The structure diagrams are:

 Class diagram: It depicts the designed system structure. A class is a description of a set of

objects which share attributes, operations, methods, relationships and semantics. The class

48 Chapter 3 Theoretical Framework

diagrams are used to depict the relations, interfaces, features and constraints between the

classes.

 Object diagram: An object is class instance, the notation and the interfaces within the object

diagram are the same that in the class diagram, just there is a tiny difference, this is that the

notation for objects name is object:class. The object diagram is used to depict the instances

relations in a graph, it shows a snapshot of the detailed date of the system at a point in time.

 Package diagram: Is a common diagram for all UML diagrams, it groups different packages to

depict the system structure.

 Model diagram: Is UML auxiliary structure diagram that displays some abstraction or specific

view of a system.

 Composite structure diagram: It depicts the relations between objects, the message sequence

and the concurrent execution flows. It displays a class internal structure and its ports. The

class meaning in this diagram is wider since it can represent software components as a

domain specific class.

 Internal structure diagram: shows the internal structure of the thing being modelled, its parts

and their relationships.

 Collaboration use diagram: It shows organised interaction of the system functionality.

Normally objects within a system cooperate each other to produce a behaviour of

collaboration.

 Component diagram: Components are considered autonomous encapsulated units within a

system they are changeable and reusable, they provide one or more interfaces. The

component diagram depicts a system temporal understanding which helps the designers. It

provides a high-level view, architectonic view, which helps to clarify the system architecture.

 Manifestation diagram: Is used to show implementation of components by artefacts and

internal structure of artefacts.

 Deployment diagram: Is applied to depict system physical parts, they can be files, jar or war,

the physical does not necessary mean something touchable, like hardware but they can be

deployed on hardware. In this diagram the stereotype <<artifact>>is applied.

 Network architecture diagram: UML standard uses Deployment diagrams to allow developers

depict network architectures, they do not define specific elements or stereotypes to display

the networking concerns.

49 Chapter 3 Theoretical Framework

 Profile diagram: It is a structure diagram that describes extension mechanisms to the UML, in

this diagram the stereotypes, constraints and tagged values are defined.

Behaviour diagrams

 Use case diagram: It can be used to depict interaction between the designed system use cases

and a user in an abstract way. The main elements are use cases (a use case is a sequence

interaction produced when an actor interacts with the system), actors and their relations

(stereotyped <<include>>, <<extend>> and <<generalize>>).

 Information flow diagram: It depicts information flow between entities at high level

abstraction, it is mainly applied when a clarification about some use case is needed. It is useful

to describe system information flow.

 Activity diagram: Is an especial case of a state machine diagram, where one or more objects

behaviour and conditions are shown, the execution is coordinated by the activity diagram.

They are commonly called control flow and object flow models. They are used to model the

system dynamics aspects and describes the state changes an object experiments.

 State Machine diagram: It depicts the finite states along the object life, it helps to clarify

complex objects activities, since inside of the object there are some activities which are

displayed in the state machine diagram. The objects have behaviour, they do things and they

know things.

 Behavioural state machine diagram: Is a specialisation of behaviour used to specify discrete

behaviour of a part of designed system through finite state transitions.

 Protocol state machine diagram: Is a state machine diagram applied to specify protocols or a

lifecycle of some classifier.

 Interaction diagram: It includes sequence diagrams, communication diagrams, timing

diagrams and interaction overview diagrams.

 Sequence diagram: It shows the objects interactions in time sequence, it shows the sequence

of messages exchanged, there are two kinds of sequence diagrams, the first one is a generic

form where all possible scenarios are describes and the other is in an instance form where

one current scenario is described. The sequence diagrams depict the participant objects and

their message ordered interaction.

 Communication diagram: Is a kind of UML interaction diagram, which shows interactions

between objects applying sequences messages in a free-form arrangement.

50 Chapter 3 Theoretical Framework

 Timing diagram: It helps to reasoning about the models on time situations, what is very

important about time constraints.

 Interaction overview diagram: It provides an overview of the flow of control of interactions.

This diagram combines elements from the activity and interaction diagrams, it is easily

replaced with times diagrams or sequence diagram.

3.2 UML EXTENSION

3.2.1 UML profile

When the UML elements syntax or semantics cannot express specific concepts of particular systems

or domains, the profiles can be applied to define some constraints added to the UML notation with

the aim of defining extensions to UML that allows the modelling of specific systems. The Object

Management Group (OMG) defines two possible approaches for defining domain specific languages

[39]:

 A new language, alternatively to UML or any other existing language. In this case both, the

syntax and semantics are defined to fit the specific system or domain features. This is

achieved following the Meta Object Facility (MOF).

 An extension to UML where the original UML notation is not modified, nonetheless new

constraints are added regarding the UML and OMG extension rules.

The profile describes capabilities that allow metaclasses to be extended in order to adapt

them for different purposes. It is the lightweight extension mechanism provided by UML which

allows the extension and specialisation of the UML meta-model.

When defining a UML profile, its stereotypes are defined to extend the UML classes in the

normative version of the UML metamodel [37]. The profiles are straightforward mechanisms for

adapting an existing metamodel with constructs that are specific to a particular domain. Thus, a

UML profile allows to add new constraints (domain-specific) to the UML metamodel.

A model is a description of (part of) a system written in a well-defined language. A well-

defined language is a language with well-defined form (syntax) and meaning (semantics) [39].

51 Chapter 3 Theoretical Framework

The OMG defines a four-layered architecture that separates the different abstraction levels

making up a model [39]:

 Layer M0: Instances. The M0 layer models the running system and its elements are the

software implementation, hardware or any element that interacts or is part of the systems,

it is the actual instances that exist in the system.

 Layer M1: The model of the system. The elements of the M1 layer are models, such as a

UML system model. This layer describes the classes each one with associated attributes. The

elements of the M1 layer are classifications of elements in the M0 layer. Each M0 element

is an M1 element instance.

 Layer M2: The model of the model (the metamodel). The modelling languages are placed at

this level such as UML. Layer M2 describes the elements used to model an element in M1.

In the case of UML, layer M2 defines “Class”, “Attribute”, “Association”, etc. Every element

at M1 is an instance of M2 and every element at M2 categorizes the M1 elements. The

model that resides at the M2 layer is called metamodel.

 Layer M3: (the meta-metamodel), M3 describes the concepts to model a modelling

language. The concept of UML Class is an instance of the corresponding element of M3 that

defines what a class is and its relationships with the rest of UML concepts. The modelling

language to describe the M3 elements is MOF and MOF can be defined by itself.

The UML specification [37] describes seven principal reasons why UML needs to be extended:

 Give a terminology that is adapted to a particular platform or domain.

 Give a syntax for constructs that do not have a notation.

 Give a different notation for already existing symbols.

 Add additional semantics to UML specific metaclasses.

 Add types that do not exist in UML.

 Add constraints that restrict the way UML’s constructs are used.

 Add information that can be used when transform a model to another model or code.

 The UML metamodel provides three extension mechanisms which allows to customise the

UML to specific domains, these three mechanisms are:

 The stereotype is the principal extension mechanism provided by UML, it is a text between

angle brackets (chevrons) that is added as metamodel elements, in order to add semantics to

52 Chapter 3 Theoretical Framework

the UML metamodel. A stereotype is defined by a name and by a set of metamodel elements

it can be attached to. Graphically, they are defined within boxes, stereotyped <<stereotype>>,

the metamodel elements are stereotyped <<metaclass>>. The notation for an extension is an

arrow pointing from a stereotype to the extended class. If the stereotype extends to more

than one metaclass, then it can only be applied to exactly one instance of one of those

metaclasses at any point of time. Any UML metaclass can be extended using stereotypes such

as States, Transitions, Activities, Use Cases, Components, Properties, Dependencies, etc., and

each metaclass can be extended by as many stereotypes as it is required, it applies as well in

backwards, this is one stereotype is able to extend one or more metaclasses.

 Constraints are a set of well-formed rules detailed in Object Constraint Language (OCL) or in

natural language and it is the way of describing the semantic [40], for instance in Table 1 the

constraints are described in natural language. The constraints can be associated to

stereotypes, imposing restrictions. Some examples of constraints are pre- and post-

conditions of operations, invariants, derivation rules for attributes and associations, etc. [39].

 The tagged value is and additional meta-attribute, it is attached to a metamodel metaclass.

Tagged values have name and type besides they are associated to a stereotype. They are

depicted as graphicall attributes of the class defined as stereotype.

 Images can also be displayed, the Image class provides the necessary information to display

an Image in a diagram. They are attached to stereotypes and they can be used in lieu of, or in

addition to. Some model elements already use an icon, for instance the actor’s icon (stickman).

3.3 SYSML

SysML [41] is a visual modelling language which provides semantics and notation, SysML resuses a

subset of UML 2 diagrams and notation and extends other parts. The intersection between UML and

SysML is named UML4SysML and the extensions to UML is named SysML profile.

SysML was designed to provide the developers a profile which was able to describe

requirements within diagrams, structure, behaviour, allocations and constraints on system

properties in order to support engineering analysis. In Fig. 11 the SysML diagrams taxonomy is

introduced, the diagrams used from UML and do not change are sequence diagram, state machine

53 Chapter 3 Theoretical Framework

diagram, use case diagram and package diagram. They modify three UML diagrams, the activity

diagram, block definition diagram and internal block diagram. Finally, SysML proposes two new

diagrams which are requirement diagram and parametric diagram.

Fig. 11 SysML Diagram Taxonomy, adapted from [42].

One of the most important extensions provided by SysML is the conception of ‘block’, which

provides a unifying idea to detail the structure of an element such as system, hardware, software,

data, procedures, facilities and even person. The <<block>> stereotype is an extension of a UML

class from UML composite structure; therefore, its notation is very similar, this means that the

<<block>> stereotype is located in the first compartment up in the box followed by the block name.

Then, multiple standard compartments can describe the block characteristics such as properties,

operations, constraints, allocations from/to other model elements and requirements that the block

satisfies.

The modified and new diagrams types will be briefly explained in this part, on the other hand,

the UML diagrams that were not changed were explained in section 3.2:

 Activity diagram: Activities specifies inputs conversion to outputs through a controlled

sequence of actions. The extensions proposed for the activities are: support for continuous

flow modelling and alignment of activities with enhanced functional flow block.

 Block Definition Diagram (BDD): Describes the relationships among blocks (e.g. composition,

association, specialisation).

54 Chapter 3 Theoretical Framework

 Internal Block Diagram (IBD): Describes the internal structure of a block in terms of its

properties and connectors.

 Requirement Diagram: The <<requirement>> stereotype represents a text based

requirement. The requirements have hierarchy and relations such as DeriveReqt, Satisfy,

Verify, Refine, Trace and Copy.

 Parametric Diagram: It is additional to the IBD and includes all its notation, nevertheless it is

restricted and firstly all the constraint blocks must be labelled with “parameters” that contain

declaration of the parameters.

The SysML basis was already introduced were the new diagrams were very briefly described,

nonetheless we encourage the reader to inquire more into the notation and rules, these can be

found in [41]. At this point it is possible to introduce the extension mechanisms of SysML. SysML

specification uses the next extension mechanisms in order to define SysML extension as we can

witness the extension mechanisms are the same that in UML:

 UML stereotypes

 UML diagrams extensions

 Model libraries

SysML diagram extensions define new diagram notations that supplement diagram notations

reused from UML 2. SysML model libraries describe specialised model elements that are available

for reuse [41].

As in UML the Profile package contains mechanisms that extend metaclasses from existing

metamodels. Therefore, the profiles mechanism is consistent with the OMG MOF. The new

notational extensions added by SysML depict stereotypes properties in compartments as well as

notes.

The requirement extension is applying stereotypes as well, thus the requirements may be

extended to create <<functionalRequirement>>, which would allow specific properties and

constraints.

55 Chapter 3 Theoretical Framework

3.4 VULNERABILITIES, THREATS, RISKS AND ATTACKS FOR IOT

The IoT security was already introduced in chapter 1, in this section a brief introduction of the

threats, vulnerabilities and risks will be given as security requirements which will be classified.

First, it is important to delineate the differences between threats and risks. A threat is the

exploit potential, for instance in the case of a car burglar, the first thought might be that the burglar

is actually the threat, nevertheless he is the attack source who is normally motivated by his selfish

feeling of wanting something that does not belong to him, in this context the threat is the potential

for the burglary to be performed [7]. The threats in the IoT appear in each system layer, they consist

of threats against the data assurance, communication assurances, application assurance, etc.. Some

examples of IoT threats include physical security, hardware, software quality, environmental, supply

chain, CPS physical reliability, resilience threats, control system transfer functions, state estimation

filters (kalman filters), insider threats (when individuals within an organisation misuse their

privileged access to cause a negative impact on the confidentiality, integrity or availability of the

organisation systems) [43]. This is not just for organisations, it could be, for instance, a sensor

network inside of a house, the people who has access to the house such as a plumber may easily

plug a malicious sensor, or device. Another threat is for instance the data deluge caused by billions

of entities generating information, this is a privacy threat. The IoT threats analysis can be addressed

from different angles, for instance in [44] an analysis in a 4 layer architecture (end-node, sensing

layer, network layer and service layer) was done. Another kind of threats are the ones that directly

affect the human user, for instance the tracking and profiling user. In [45] a set of threats regarding

the IoT scenario is introduced here as well:

 Control systems, vehicles and even the human body can be accessed and manipulated causing

injury or worse: Unauthorised access, actuation and control systems.

 Health care providers can improperly diagnose and treat patients.

 Loss vehicle control

 Safety-critical information unnoticed such as warnings of a broken gas.

 Critical infrastructure damage

 Malicious parties

 Unanticipated leakage of personal or sensitive information

 Unlawful surveillance

56 Chapter 3 Theoretical Framework

 Inappropriate profiles and categorisations

 Manipulation of financial transactions

 Monetary loss

 Theft or destruction of IoT assets

 Gain unauthorised access to IoT edge devices.

 Unauthorised access to the enterprise network

 Create botnets, compromising many IoT devices.

 Impersonate IoT devices.

Once the most general IoT threats were introduced is time to think about the system

weakness. Vulnerabilities are unavoidable in all systems, there are design vulnerabilities,

implementation vulnerabilities and protocol vulnerabilities, they can be deficiencies in a device

physical protection, software quality, configuration, suitability of protocol security, deficiencies in

hardware, internal physical architecture and interfaces, operating system and the list goes on, in

fact there are new vulnerabilities every day. A vulnerability is the goal of the current exploit from

the threat actor.

The Open Web Application Security Project (OWASP) lists the top ten IoT vulnerabilities [46]:

 Insecure web interface

 Insufficient authentication/authorisation

 Insecure network services

 Lack of transport encryption/integrity verification

 Privacy concerns

 Insecure cloud interface

 Insecure mobile interface

 Insufficient security configurability

 Insecure software firmware

 Poor physical security

The same project (OWASP) [46] lists the vulnerabilities related to the attack surfaces they

identified.

57 Chapter 3 Theoretical Framework

Table 3 OWASP IoT attack surfaces and vulnerabilities

Attack Surface Vulnerability

Ecosystem Access Control
o Implicit trust between components

o Enrolment security

o Decommissioning system

o Lost access procedures

Device Memory o Cleartext usernames

o Cleartext passwords

o Third-party credentials

o Encryption keys

Device Physical Interfaces o Firmware extraction

o User Command line interface (CLI)

o Admin CLI

o Privilege escalation

o Reset to insecure state

o Removal of storage media

Device Web Interface o SQL injection

o Cross-site scripting

o Cross-site Request Forgery

o Username enumeration

o Weak passwords

o Account lockout

o Known default credentials

Device Firmware o Hardcoded credentials

o Sensitive information disclosure

o Sensitive URL disclosure

o Encryption keys

o Firmware version display and/or last update date

Device Network Services o Information disclosure

o User CLI

58 Chapter 3 Theoretical Framework

o Administrative CLI

o Injection

o Denial of Service

o Unencrypted Services

o Poorly implemented encryption

o Test/Development Services

o Buffer Overflow

o Vulnerable UDP Services

o DoS

Administrative Interface o SQL injection

o Cross-site scripting

o Cross-site Request Forgery

o Username enumeration

o Weak passwords

o Account lockout

o Known default credentials

o Security/encryption options

o Logging options

o Two-factor authentication

o Inability to wipe device

Local Data Storage o Unencrypted data

o Data encrypted with discovered keys

o Lack of data integrity checks

Cloud Web Interface o SQL injection

o Cross-site scripting

o Cross-site Request Forgery

o Username enumeration

o Weak passwords

o Account lockout

o Known default credentials

o Transport encryption

59 Chapter 3 Theoretical Framework

o Insecure password recovery mechanism

o Two-factor authentication

Third-party Backend APIs o Unencrypted Personally Identifiable Information

(PII) sent

o Encrypted PII sent

o Device information leaked

o Location leaked

Update Mechanism o Update sent without encryption

o Updates not signed

o Update location writable

o Update verification

o Malicious update

o Missing update mechanism

o No manual update mechanism

Mobile Application o Implicitly trusted by device or cloud

o Username enumeration

o Account lockout

o Known default credentials

o Weak passwords

o Insecure data storage

o Transport encryption

o Insecure password recovery mechanism

o Two-factor authentication

Vendor Backend APIs o Inherent trust of cloud or mobile application

o Weak authentication

o Weak access controls

o Injection attacks

Ecosystem

Communication

o Health checks

o Heartbeats

o Ecosystem commands

o Deprovisioning

60 Chapter 3 Theoretical Framework

o Pushing updates

Network Traffic o LAN

o LAN to Internet

o Short range

o Non-standard

On the other hand, the risks depend on the probability of a particular event, attack, or

condition. It can be measured applying qualitative or quantitative methods. It is different of the

vulnerabilities since the vulnerabilities are the exploitable spot. On the other hand, the risk is the

impact that an event can cause measured in money or quality of service for instance. It depends a

lot on the attacker possibilities such as knowledge, money, number of attackers, expertise of the

attacker, etc., an attack model is useful to model the attacker characteristics. Risk is the damage

that a motivated attacker can injure into the system.

Threat modelling helps to manage the risk, because once the threats are known, normally,

we are able to rate them in order to balance the risks that the system is ready to affront, the threat

modelling helps to measure the impact and overall cost of a compromise, how valuable the target

may be to attackers, anticipated skill and motivations and a priori knowledge of a systems

vulnerabilities and their repercussion.

The security requirements for IoT are completely related to the risks, vulnerabilities and

threats, IoT security requirements depend on the system, since every system has independent

assets to be protected, therefore the general vulnerabilities may not apply to every system, despite

of that the security requirements must intent to avoid the vulnerabilities and threats and they must

reduce the risks, hence a customised analysed should be done for each IoT systems, or even for the

future IoT devices development. The IoT should provide applications with strong security protection.

The security requirements are the vulnerabilities and threats and attacks but with the “not

allow” (or any other negation in order to prevent the attack, threat or vulnerability) at the beginning

for instance:

 Threat: Injection attack

 Security requirement: Not allow injection attack.

61 Chapter 3 Theoretical Framework

There are different abstraction levels for the security requirements, the example above is a

low-level abstraction security requirement, nevertheless those can be mapped to a more general

requirement, for instance authentication, confidentiality, availability, non-repudiation, etc.

In a four layer IoT architecture, in [44] a security analysis was performed, it is important to

point at the security requirements for each IoT layer, therefore, the security requirements per layer

will be described here based on [44]:

 Sensing layer and IoT end-nodes:

 End nodes: Physically security protection, access control, authentication,

non-repudiation, confidentiality, integrity, availability, privacy, etc.

 Sensing layer: data source authentication, device authentication, integrity,

availability, timeless, etc.

 Network layer:

 Confidentiality, integrity, privacy, protection, authentication, group

authentication, keys protection, availability, etc.

 Privacy leakage, since IoT devices may be located in untrusted places, an

attacker can retrieve the confidential information.

 Communication security (Integrity, confidentiality and availability).

 Allow over connectivity to do not lose control of the user, nevertheless here

a DoS attack may appear; therefore, the existence of a behaviour monitor

is needed.

 Protection against man in the middle (MITM) attack.

 Service layer:

 Authentication, service authentication, group authentication, privacy

protection, integrity, security of keys, non-repudiation, anti-replay,

availability, etc.

 Privacy leakage.

 Application-interface layer:

 Integrity and confidentiality, cross layer authentication and authorisation.

In this chapter the theoretical basis were introduced, this means that all the fundamental

knowledge and works which the research includes were explained in order to be able to propose

the UML/SysML extension to depict and model the IoT security requirements. In the next chapter

62 Chapter 3 Theoretical Framework

the IoTsecM proposal is formally presented, applying the UML/SysML extension mechanisms

described in Chapter 3.

63 Chapter 4 IoTsecM: Methodology and research development

4 IOTSECM: METHODOLOGY AND RESEARCH DEVELOPMENT

In this chapter the proposal extension approach to UML/SysML is introduced. This proposal is

referred to as IoTsecM (IoT Security Modelling) since it is aimed at modelling the security

requirements of IoT systems. Firstly, the security requirements were obtained and analysed in the

previous sections, from there, fourteen security elements were identified, which are abstract

enough to depict the security concerns of IoT systems from the analysis stage in a MBSE process,

this allows the developers to add security mechanisms in forward stages such as design, even if the

developers are not completely related to cybersecurity.

Once the security concerns were classified and depicted as elements, a nomenclature was

proposed were each security abstract element was bounded to a nomenclature element.

The UML/SysML extension is the way chosen to deploy the proposed security nomenclature

in an intuitive and graphic notation, which escorts the developers along the analysis and design

stage, it is meant to decide where to introduce security countermeasures in the IoT system.

IoTsecM has two main attributions:

 IoTsecM actors: this is introduced in section 4.1, they model the principal actors in an IoT

environment (humans, actuators, sensors, tags and IoT devices).

 IoTsecM nomenclature: It comprises fourteen security elements, it is the IoTsecM core and it

will be introduced in section 4.2.

The profile design development starts once the IoTsecM metamodel was designed, the

security nomenclature and actors were obtained, therefore it has to fit into a UML/SysML profile, in

order to achieve that the metamodel was deployed on eclipse Papyrus a tool which allows the

profile generation. There, the stereotypes, constraints and tags were defined. Although in the next

sections the IoTsecM profile will be explained in detail, an IoTsecM profile nomenclature overview

is displayed in Fig. 12 and the IoTsecM profile actors overview is shown in Fig. 13. The IoTsecM

profile applies the UML and SysML metamodels, in order to obtain the metaclasses features from

each one.

64 Chapter 4 IoTsecM: Methodology and research development

Fig. 12 IoTsecM profile nomenclature overview

65 Chapter 4 IoTsecM: Methodology and research development

.

4.1 IOTSECM ACTORS

Within the IoT landscape, the interaction of many entities may appear according to the IoT system.

Therefore, the IoT environment comprises many assets from many domains, this last fact makes the

IoT an immense compendium of items. There are some approaches that help in the actor’s

classification such as IoT-A proposal specifically in their domain model, where they identified users

and devices.

The proposal of actors does not rely on the security concerns directly, nevertheless they are

a fundamental part of the modelling stages since they abstract the main features of each actor,

allowing the modelling process. In IoTsecM there are four actors regarded as:

 User: The users can be humans, or any digital device, application, service or software agent

that interacts indirectly or directly with the physical entity or the system.

 Sensor: It is any artefact that provides information about the physical entity.

 Actuator: It is any artefact that is able to modify the physical state of a physical entity.

 Tag: It is normally attached to the physical entity and it allows its identification.

 IoT device: It is the hub and processing core which gathers the sensor information and

processes it. The IoT handles the communication from the virtual entity, to the system. It is

able to send instructions to actuators.

The UML extension mechanisms applied for the actors are stereotypes and the UML

metaclass extension is Actor, it is part of the IoTsecM profile and the corresponding part is depicted

in Fig. 13.

66 Chapter 4 IoTsecM: Methodology and research development

Fig. 13 IoTsecM profile actors.

The IoTsecM stereotypes to depict the actors are: <<IoTdevice>>, <<User>>, <<Actuator>>,

<<Sensor>> and <<Tag>>. They model the actors described earlier. A description of the IoTsecM

actors including constraints and features is introduced below.

IoTdevice

The IoT device extends the UML metaclasses Device (from the deploy diagram) because it can be

used to model the system architecture as a hardware device, <<IoTdevice>> stereotype extends the

Actor and Class metaclasses as well, this means that it can be applied to model an actor interacting

with the system, or a class in a UML class diagram. The IoT device has some predefined attributes

which abstract the main communication capabilities such as:

 Bluetooth: This attribute is thought to be Boolean type, nevertheless it was predefined as

Undefined to allow the developers flexibility when they apply the profile. When it is true then

the Bluetooth communication is activated, when it is not it means than that capability is not

supported, or if it is supported it is not active.

 Wifi: It is recommendable to define this attribute as Boolean type, its semantic is quite similar

to the Bluetooth attribute and nevertheless this attribute is applied to Wi-Fi connection.

 MobileNetwork: This attribute is a Boolean type as well, it defines when the mobile network

communication is activated or not.

67 Chapter 4 IoTsecM: Methodology and research development

 Zigbee: It is a very common communication protocol in wireless sensor networks (WSN), as

the IoT device gathers the sensor data or sends instructions to the actuators, therefore, it is

relevant to add this protocol as a predefined attribute in boolean type in order to know when

it is enabled or disabled.

 USBPort: Many IoT devices have USB ports, hence they are regarded as an IoT device

attribute. It is recommended that USBPort attribute be defined as Boolean as well.

 Microphone: If the IoT devices owns a microphone it can be depicted as well with this

attribute defined as Boolean type.

 HDMI: It depicts a High Definition Multimedia Interface (HDMI) port which is shown as a

Boolean attribute as well.

Two operations are regarded as predefined in <<IoTdevice>> stereotype in order to depict

the most common functionalities of this module which are:

 receiveSensorData(): This operation is meant to gather the sensor data in the IoT device.

 sendData(): This is a more general operation, it is able to send data to the user if the

corresponding service is running on the IoT device. Another option is to send information to

some external server or the cloud.

User

The <<User>> stereotype is applied to display the existence of a user, as it was mentioned earlier it

may be a human, software or any electronic device that invokes a resource from the physical entity.

The <<User>> stereotype extends the actor and class metaclasses, thus it might be applied as an

actor in a use case diagram and as a class in a class diagram, or in an object diagram when instance(s)

of it appears.

The attributes proposed for the <<User>> stereotype are ID which is unique and is

recommendable to state it as Integer, nevertheless in the stereotype it is undefined in order not to

be linked to any technology or programming language. The TypeUser attribute is normally a string

and it defines the type of user who is invoking the resource such as human, software, device, etc.

The operation offered by the <<User>> stereotype is invokeService() which invokes a service from

the IoTdevice or another server.

68 Chapter 4 IoTsecM: Methodology and research development

Actuator, Sensor and Tag

The <<Actuator>> stereotype refers to the entity which is able to modify the physical entity state. It

has two attributes, the ID attribute and the TypeActuator attribute. It admits the actsPE() operation

which is the abstract method to interact directly with the physical entity.

The <<Sensor>> stereotype models the sensor actor, where there is a unique ID attribute for

each <<sensor>> instance, it defines a TypeSensor attribute where the sensor type is defined, for

instance humidity, light, camera, etc. The only predefined operation is monitorPE() which is the

dedicated method to monitor some physical entity characteristic according to the type of sensor.

The <<Tag>> stereotype models the tag actor, it includes a unique ID attribute for each tag

and it defines the attachedTo attribute which indicates which physical entity it is attached to.

4.2 NOMENCLATURE

The aim of the IoTsecM profile is to address the security concerns of IoT systems, therefore, the

core of the proposal are the security elements which are described in this section. They encapsulate

the security requirements in security elements besides each element conforms a nomenclature

which is the way to depict them in a UML/SysML profile since it is easier to memorize, reduce boxes

sizes and allows a more agile design.

The number of elements identified is fourteen, each one is extended applying a UML/SysML

extension mechanism, a summary of these elements is depicted in Table 4 and in the next

subsection a detailed description is introduced.

Table 4 IoTsecM profile nomenclature.

Element Name Extension

mechanism

Base meta-class(es)

N Authentication Stereotype Class, use case, component, block, activity

and state

69 Chapter 4 IoTsecM: Methodology and research development

Z Authorization Stereotype Class, activity, component, block, state and

use case

C Cypher Stereotype Use case, component, block, class

D Decipher Stereotype Use case, class and component

SS Secure Storage Stereotype Link, property, association, communication

path and constraint

SC Secure

communication

Stereotype Constraint, communication path and link

KM Key management Stereotype Class, component, block, device and

association class

T&R Trust and

Reputation

Stereotype Class, block and component

IM Identity

management

Stereotype Class, block, component, activity and

association class

Ps Pseudonym Stereotype Actor and constraint

CA Certification

authority

Stereotype Class, block, component and device

RA Registration

authority

Stereotype Class, block and component

TP Tamper protection Stereotype Constraint and property

BM Behaviour monitor Stereotype Class, block, component and device

In next subsections each one of the IoTsecM nomenclature elements are described.

4.2.1 Authentication: N

Authentication is the security mechanism for ensuring that the identity of a user or service is valid,

hence it is an essential element of a typical security model. The term authentication defines the

process of verifying the identity of a subject to prove if someone or something is, indeed, who or

what it claims to be. “Authentication is the binding of identity to a subject” [47].

70 Chapter 4 IoTsecM: Methodology and research development

In IoT systems the authentication process is not just in one layer of the system, it can be

spread along the whole architecture, for instance the physic layer must authenticate sensors, tags

and actuators, or the service layer has to validate the IoT devices identity. Therefore, in IoT systems

the authentication mechanism becomes more complex, hence, it needs to be part of an entire

security infrastructure for its correct implementation.

The authentication regards three main types [48]:

 What the subject knows: This approach is also known as knowledge-based ant it refers to

private information supplied by the subject, for instance passwords or secret information.

 What the subject possesses: It is known as possession-based as well and it could be a badge

or card.

 What the subject is: it is related to biometric-based as fingerprints or retinal characteristics.

A robust authentication process should comprise the binding of two or more authentication

types. The functional principle is addressed with a formal description which is provided by [47] and

it consists of five components:

1. A: Set of specific information with which entities prove their identities.

2. C: Complementary information, it is the set of information that the system stores and uses to

validate the authentication information.

3. F: Complementation functions that generate the complementary information from the

authentication information. That is, for 𝑓 ∈ 𝐹, 𝑓: 𝐴 → 𝐶.

4. L: Set of authentication functions that verify identity. That is, for 𝑙 ∈ 𝐿 , 𝑙: 𝐴 × 𝐶 →

{𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}.

5. S: Set of selection functions that enable an entity to create or alter the authentication and

complementary information.

The authentication process consists of obtaining the authentication information from an

entity, analysing the data and determining if it is associated with that entity. This means that the

processing unit must store some information about the entity. It also suggests that mechanisms for

managing the data are required.

When the IoT security architecture is defined the authentication, capability is one of the most

important security technology selection and it will depend on the deployment designs for the IoT

infrastructure e.g., if the Amazon Web Services (AWS) IoT cloud is used then the authentication and

71 Chapter 4 IoTsecM: Methodology and research development

authorisation built-in should be examined. Nowadays Amazon provides two options: X.509

certificates and Amazon own SigV4 authentication, they offer two protocol choices: MQTT and

HTTP. Nevertheless, if the IoT system is thought not to use any cloud-based service it may leverage

a public key infrastructure (PKI) certificates for authentication or a pseudonyms public key

infrastructure (PPKI) as well [49]. The industry has noticed that using secure socket layer (SSL)

certificates are not practical, hence they have tried some other vendors such as GlobalSign and

DigiCert. Other vendors that offer IoT-specific authentication and authorisation solutions are Brivo,

ForgeRock and Nexus.

The element N abstracts the authentication process in a model item guaranteeing for the

occurrence of an authentication of an actor applying an authentication method at a particular time,

N is applied in the IoTsecM diagrams as a stereotype. Once the security requirements and non-

functional requirements are obtained the N element depicts an authentication mechanism

regarding the abstraction level, this means that it can model the security requirement, use case,

class, object, component and block. Therefore, the metaclasses extended are class, object and

component and block as it is shown in Fig. 16. This certainly helps IoT designers to build security

mechanisms from a design stage even if they are not completely involved in security issues.

For the IoTsecM actors, the N element is applied as a security requirement and it can be

expressed with an N over the actor’s head, this is an extension to the UML notation since UML does

not depict security requirements in the use case diagram, as is the case also in SysML and SysMLsec.

This will allow the designers to build the first use cases from the scenarios found, addressing the

authenticated actors properly in a visual way. In Fig. 14 the authenticated actors are depicted, where

the N is written within a text box since it can be implemented in all UML/SysML tools.

Fig. 14 <<N>> stereotype as a requirement over the actor's head.

When the authentication process is considered as a use case, the <<N>> stereotype may be

displayed as is shown in Fig. 15, here an entity is related to the use case, it means that the entity

72 Chapter 4 IoTsecM: Methodology and research development

stores an authentication process or protocol, in other words, if the example is followed the

<<IoTdevice>> named Device1 authenticates other entities e.g., sensors, actuators or tags. At this

abstract level could be difficult to determine which hardware or infrastructure will address the

authentication method, therefore, this representation fills the gap between the non-functional

security requirements that in UML and SysML are not addressed and some automation tools or well-

defined authentication protocols.

Fig. 15 <<N>> stereotype as a use case.

In static diagrams, the N element models a use case, class, software component, block

(SysML) and object; on the other hand, in dynamic diagrams the N element depicts an activity or a

state. In Fig. 16 the <<N>> stereotype and the corresponding extended metaclasses are shown, the

UML notation is conserved, in the operations the principle functions described before are used as

the minimum functionalities of the class, nonetheless the operations are open to any other

functionality that could be related to the authentication module.

The N element has the A and f parameters as entry data, therefore the N element by itself or

using another element of the nomenclature will determine C to obtain l [10]. A is the set of specific

information with which entities prove their identities, C is the set of complementary information

that is used by the system to validate authentication information, F is the set of complementation

functions, L is the set of authentication functions to verify identity and S is the set of selection

functions that enable an entity to generate.

With 𝑙 ∈ 𝐿 and 𝑓 ∈ 𝐹,

𝑁(𝐴, 𝑓) = 𝑙(𝐴, 𝐶) = {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} Equ. 1

𝑓(𝐴) = 𝐶 Equ. 2

73 Chapter 4 IoTsecM: Methodology and research development

𝑙(𝐴, 𝐶) = {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} Equ. 3

The <<N>> stereotype can be a class; hence it has instances (objects) which can be applied in

a sequence diagram, object diagram and state diagram. The N element also can be modelled as a

software component which can be allocated in different physical places, for this the UML notation

is utilised. In Fig. 16 the metamodel for the <<N>> stereotype is displayed, the metaclasses

extended are class, UseCase, Component, Activity and State. The <<N>> stereotype contains the

three main operations described before and the assertion which is the result of the authentication

process, therefore, it is recommendable to declare it as Boolean type.

Fig. 16 IoTsecM <<N>> stereotype and metaclasses extended.

There are many approaches to guarantee actor’s authentication, in [50] a survey of some

authentication methods is introduced, nevertheless new authentication methods and new ways to

exploit their vulnerabilities will be found. The function of the N element is to provide to the

designers an abstract module that helps in the further implementation. This implementation can be

modelled as well, using IoTsecM state machine diagrams where the life of an instance of <<N>>

stereotype is described step by step.

74 Chapter 4 IoTsecM: Methodology and research development

4.2.2 Authorization: Z

Once an actor is identified and authenticated, it is required to determine which rights it has (read,

write, delete, execute). Therefore, an authorization element is fundamental for the IoTsecM

extension. The Z element refers to the access control decisions based on access control policies.

Z authorizes or refuses a subject to access to a resource with some actions permitted related

to its identity. From an abstract point of view its basic functional principle can be modelled like this

[47]:

𝑍(𝑠, 𝑟, 𝑜) → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} Equ. 4

𝑤𝑖𝑡ℎ 𝑠 ∈ 𝑆, 𝑟 ∈ 𝑅 𝑎𝑛𝑑 𝑜 ∈ 𝑂

S is the set of subjects performing the access.

R is the set of resources to be accessed.

O is the operation to be performed on the resource.

The functionality of the Z element is based on the AuthZ component in [13], so the

recommendable data types for this element are:

Boolean: Z.authorize (Assertion, Resource, ActionType)

Boolean represents the result of the Z element decision, normally true or false (permit, deny).

The Assertion depicts the accessing actor’s information, typically are ID, certificate, Security

Assertion Markup Language (SAML) assertion, Kerberos assertion, etc. The Resource indicates the

asset to be accessed, for instance services or data. The ActionType depicts the action to be

performed in the resource, for example read, write or execute.

In [51] the nomenclature of access control systems is defined, the authorise functionality is

called Policy Decision Point (PDP), the Policy Enforcement Point (PEP) and the Policy Administration

Point (PAP). All these functionalities are encapsulated within the Z element since these are the basic

access control components which normally are present.

The Z element abstracts the main functionalities of an access control system in order to

provide the system model with an abstraction of an access control.

75 Chapter 4 IoTsecM: Methodology and research development

Currently, there are two main access control mechanisms that could be suitable for IoT

systems:

 Role-based access control (RBAC): In [52] the standard for the RBAC model is provided. The

main elements of this model are Users, Roles, Objects, Operations and Permissions. A user is

typically defined as a human being or a software agent, therefore it could be extended to the

IoTsecM actors as well. A Role is a job function within the context of an organisation. Role

refers to authority and responsibility conferred on the user assigned to this role. Permissions

are approvals to perform one or more operation on one or more protected objects. An

operation is an executable sequence of actions that can be initiated by the system entities.

An object is a protected system resource. Two major relationships in this model are user

assignment and permission assignment. User assignment relationship describes how users

are assigned to their roles. Permission assignment relationship characterises the set of

privileges assigned to a Role [53].

 Attribute-based access control (ABAC): the main feature of this mechanism is that it is not

related to the identity of the actor directly, but on the attributes, he is presenting. This is for

instance a permission based on the age of the actor. So, it delivers a high level of privacy for

the user. However, it also requires a higher trust to the entity creating the assertion [47].

When the development team choose this kind of access control, it is recommendable to

consider the modelling of the <<T&R>> stereotype which is introduced in section 4.2.7.

In an IoT system the access control policies are normally changing indirectly or in some cases

they cannot even being changed therefore, access control policy will mostly be fixed since the

deployment or even design time. The different actor’s roles are fundamental to guarantee the

firmware upgrade and the administration part of Z element (PAP) must provide the principle

abstract operations.

IoTsecM provides an extension to depict whether an actor is authorised, it is writing a “Z”

over the actor’s head indicating that the current actor is or need to be authorised. In Fig. 17 there

is an example where a sensor is an authorised actor and the Z is over its head. This is the first step

in the design stage to map an authorization requirement within the IoTsecM notation.

76 Chapter 4 IoTsecM: Methodology and research development

Fig. 17 Z element for authorised actors.

The functional principle described before is mostly related to Access Control Lists (ACLs) and

its correct implementation, therefore Z element involves an authentication mechanism. The Z

element must be able to map the certificates authenticated from N to some specific policies. A

<<Z>> stereotype instance can be called from a <<IM>> stereotype instance if it is resolving a

pseudonym.

In the IoTsecM use case diagram, an entity should provide the authorization service, which

can apply the <<Z>> stereotyp to model it within a use case, e.g. in Fig. 18 an IoT device called central

node has the use case Z wich depicts that this actor develop an authorization mechanism.

Fig. 18 <<Z>> stereotype applied in a use case

The Z element models the three main functionalities of an authorization infrastructure;

therefore, the main operations of the PAP should be applied in the Z element. The IoTsecM profile,

will allow to design these abstract operations within the <<Z>> stereotype, it is shown in Fig. 19

where the <<Z>> stereotype definition is shown and the metaclasses extended are Class,

Component, UseCase, Activity and State. The main functionalities of a PAP are predefined in the

operations: Zstart(s,r,o), setPolicyRoot(), getPolicies(), setPolicy(), getPolicy(), addPolicy() and

77 Chapter 4 IoTsecM: Methodology and research development

deletePolicy(). The <<Z>> stereotype includes three properties, two of them are Boolean which are

RBAC and ABAC that define the control access type when true and the other property is an ID

Fig. 19 <<Z>> stereotype definition.

4.2.3 C: Cipher and D: Decipher

Cryptography comes from two Greeks words, kryptós and graphein [47] which mean hidden and

writing respectively, so it could be translated as “secret writing” and is the art and science of

concealing meaning. It provides an indispensable tool set for securing data, transactions and

personal privacy.

A cryptographic module should be able to offer the service of encryption, digital signature or

message authentication code (MAC), in order to satisfy the confidentiality, authentication, integrity

and non-repudiation features [47]. A good cryptosystem protects against:

 A ciphertext only attack, the adversary has only the ciphertext and its goal is to find the

corresponding plaintext.

 A known plaintext attack, the adversary has the ciphertext and the plaintext, the goal is to

find the key that was used.

 A chosen plaintext attack, the adversary may ask that specific plaintexts be enciphered. The

attacker is given the corresponding ciphertext. The goal is to find the key that was used.

78 Chapter 4 IoTsecM: Methodology and research development

Cryptographic primitive types fall into the following categories [7]:

 Encryption:

 Symmetric

 Asymmetric

 Hashing

 Digital signatures

 Symmetric

 Asymmetric

 Random number generation: The basis of most cryptography requires very large numbers

originating from high entropy sources.

Cypher element means that a <<C>> stereotype requires the dynamic or static encryption of

data, it should contain the encryption algorithms to achieve the encryption data following an

algorithm given. This element can work with any other element which requires to encrypt data,

therefore <<C>> stereotype is an abstraction of an encryption module, it provides symmetric

encryption, asymmetric encryption, counter modes, hashes and digital signatures.

The C element receives the data, the key and the algorithm that will be applied, as a

consequence it returns the encrypted data and the key used; for symmetric key it returns the only

key and in the case of asymmetric key it returns the public key used for the encryption process. It is

described in the next function:

𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛(𝐷𝑎𝑡𝑎, 𝐾𝑒𝑦, 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝐼𝐷)

XOR operation is used in block chains and counter modes besides it helps to other system

functionalities. Therefore, the C element includes the XOR operation.

𝑋𝑂𝑅𝑜𝑢𝑡 = 𝑋𝑂𝑅𝑖𝑛(𝐷𝑎𝑡𝑎1, 𝐷𝑎𝑡𝑎2)

The counter modes make use of a counter, in these, the plaintext data is not actually

encrypted with the cipher and key. Rather, each bit of plaintext is XOR’d with a stream of

continuously produced cipher text comprising encrypted counter values that continuously

increment.

𝐶𝑀𝑜𝑢𝑡 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐶𝑦𝑝ℎ𝑒𝑟𝑇𝑒𝑥𝑡(𝐶𝑜𝑢𝑛𝑡𝑒𝑟)

79 Chapter 4 IoTsecM: Methodology and research development

Although the encryption process is not always performed by just one module, it is important

to add a counter mode which is able to produce cipher text.

In today’s Internet threat environment, end-to-end encryption at the session and application

layers is the most prominent due to severe data losses that can occur when decrypting within an

intermediary. The security fixes often include building secure communication gateways (where

newly added encryption is performed). In others, it is to tunnel the insecure protocols through end-

to-end protected ones [7].

Symmetric algorithms consist of a ciphering operation using the plaintext or ciphertext input,

combined with the shared cryptographic key.

The only asymmetric encryption algorithm in use today is RSA (Rivest, Shamir, Adelman), an

integer factorisation cryptographic (IFC) algorithm that is practical for encrypting and decrypting

small amounts of data (up to the modulus size in use).

In order to use block chaining modes, the <<C>> stereotype instance can be called as many

times as the chain requires it, hence it can be easily added, since the C element is a meta-class which

can be applied and added following the system requirements. In this way the cipher block chaining

(CBC) are included. CBC is currently available as an option, for instance, in the ZigBee protocol (based

on IEEE 802.15.4).

The <<C>> stereotype can be applied as a use case within the use case diagram to depict that

a given actor has to encrypt data, or it could have an encryption module as well. In Fig. 21 the <<C>>

stereotype is shown as a use case where an actor named CentralNode which is an IoTdevice has to

encrypt data, this means that it requires the minimum encryption capabilities described before

according to the system security requirements and computer power.

80 Chapter 4 IoTsecM: Methodology and research development

Fig. 20 <<C>> use case example.

The <<C>> stereotype extends the use case, class, component, device, activity and block

(SysML) metaclasses. This stereotype includes the abstract operations previously described, such as

Cin(D, K, A), where D is the data to encrypt, K is the key and A is the algorithm required for the

encryption process. The second operation provided by the <<C>> stereotype is a XOR, depicted as

XOR(D1,D2), D1 and D2 are the data that will be XOR’d. The last operation is

GenerateCypherText(Counter) which corresponds to the counter mode explained earlier.

Fig. 21 <<C>> stereotype definition.

81 Chapter 4 IoTsecM: Methodology and research development

The main functionality of the D element is to decrypt the encrypted message; therefore, it

must know the algorithm used in the encryption process, in that way it will be able to decrypt the

information, it needs to know the key used to encrypt the data, therefore communication between

the D element and the KM element is needed, nevertheless the architecture is not regarded in the

metamodel proposed and the aim is to provide the abstract elements with abstract operations and

attributes in order to customised as each IoT system requires it. The main functionality of the D

element may be embedded in the C element, it is that to ease the model only the <<C>> stereotype

can be applied assuming that it includes the next function which is actually the only D element

function:

𝐷𝑜𝑢𝑡 = 𝐷𝑖𝑛(𝐸𝑑𝑎𝑡𝑎, 𝐾𝑒𝑦, 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝐼𝐷)

Within the IoTsecM profile the D element can be depicted as a use case, this means that an

actor who includes this use case must have a decipher module with the algorithm used to decrypt

the data. An example of this is shown in Fig. 1, where an actor named “CentralNode” has a D use

case. This means that such actor carry on the decipher process of a given data.

Fig. 1 D element as a use case.

The <<D>> stereotype is proposed to cover the decryption process in the analysis stage,

therefore it extends the UseCase, class and component metaclasses from UML and on the other

hand it extends the block metaclass from SysML. The only property defines is the ID and the

operation defined is the Din operation which encapsulates the <<D>> function described earlier, in

the Fig. 22 the <<D>> stereotype definition can be observed.

82 Chapter 4 IoTsecM: Methodology and research development

Fig. 22 <<D>> stereotype definition.

4.2.4 SS: Secure Storage

As it was discussed before within the IoT environment there are resources on-device and in the

network, in many scenarios the stakeholders would like to protect that sensitive information or

store it in a secure place. To protect sensitive data or meet privacy requirements, data access policy

may be provided to enforce fine-grained data access rules for example requiring certain data or

fields to be removed, obfuscated or redacted before distributing them to the data consumers for

analysis or other uses [54]. The secure storage involves confidentiality and integrity of sensitive

information stored.

Sensitive data can be protected applying encryption at the field, directory, record, file system

or storage device level. Besides access control policies must be applied in order to guarantee that

only authorised actor access the right information. In some cases the storage is performed at the

cloud or in an extern device therefore, to protect data, provenance and privacy requirements must

be attached to it.

The use of keys to encrypt and decrypt data blocks are used by cryptographic algorithms,

nevertheless key managements imposes a hassle in IoT storage systems, in [55] a scheme without

key management requirement is proposed applying Shamir’s secret sharing scheme, since it is

commonly used for small size secrets rather than large data management. Another light proposal is

addressed in [56] where a combined secure storage and communication is proposed and validated,

83 Chapter 4 IoTsecM: Methodology and research development

there are others proposals for instance [57] where a confidential storage in sensor nodes within a

WSN is introduced, it matches hardware capabilities with security requirements. The IoTsecM

profile aims at covering the abstraction of a secure storage requirement, as it can be seem in those

proposals in IoT systems it is not just to apply a cryptographic algorithm and keep safe the key, there

are many other concerns such as power consume, latency, etc. therefore it is fundamental to regard

the secure storage for IoT systems since the analysis stage.

IoTsecM profile proposes an extension to UML/SysML to depict the secure storage

requirement, it is by applying the stereotype extension mechanism entitled <<SS>> which extends

the constraint, link, association, communicationPath and property metaclasses from UML and

requirement metaclass from SysML.

Fig. 23 <<SS>> stereotype definition.

4.2.5 SC: Secure Communication

In many cases at the benchmark of projects, the security mechanisms to implement or to consider

are uncertain. As it is known in a software life-cycle the first approach that developers have with the

system is how the client is figuring it out, they describe the system overview and then the first

scenarios are obtained. At that point the developers are able to depict the first use cases and as a

consequence the first security requirements in an abstract representation, as it was discussed

earlies nowadays there are some approaches to achieve this, nevertheless within the use case

diagrams it is not completely covered, there are some approaches as [16] where a UML extension

84 Chapter 4 IoTsecM: Methodology and research development

is proposed to elicit security requirements as misuse case, it is a threat or attacker model,

nonetheless it does not cover the security design requirements that IoTsecM profile aims at

covering. The secure communication ensures the data transmission between two authenticated,

authorised and in some cases trusted entities, since sometimes even a partial leakage of information

should be prevented.

When the secure communication requirement appear then some parameter should be

addressed according to [13] the following parameters can be part of the secure communications

enablement request:

85 Chapter 4 IoTsecM: Methodology and research development

 Target(s) identifier(s): entity identifiers with which the requesting node is trying to

communicate in a secure way. Type of secure communications enablement: it may be

Authenticated Key Exchange (AKE) protocol which would be running between the

communicating nodes.The request should establish if the security property of Perfect

Forward Secrecy (PFS) is required or not between the requesting node and the target

node(s) with which it will securely communicate. PFS may mean that an especially robust

AKE protocol will be triggered between the nodes. Type of authentication. The requesting

node may wish to authenticate its peer(s) using an end-to-end scheme.

 Supported identification scheme(s): the infrastructure and both entities must support the

identification scheme.

This proposed extension is based on the UMLsec <<secure links>> stereotype [20] where the

secure communication and information flow is regarded. In IoTsecM profile the <<SC>> stereotype

is presented, it is a UML extension which depict that the communication between two entities needs

to be secure, besides it is a constraint, this means that the security requirement must be attended

in forwarded stages such as design, e.g. a certificate-based protocol may attend the {SC} constraint

between two entities. Hence the <<SC>> stereotype extends the link, communication path and

constraint metaclasses from UML and the requirement metaclass from SysML.

Fig. 24 <<SC>> stereotype definition.

86 Chapter 4 IoTsecM: Methodology and research development

4.2.6 KM: Key Management

A key management system enables and assist IoT assets in the rapprochement of secure

communication or context, it is an integrated approach to generate, store and handle the keys

within a cryptosystem. Efficient key distribution and management mechanisms are very important

as well as lightweight ciphers. Besides the KM element is able to provide capabilities to assist the

low-resource nodes in their operations, it depends on specific protocols and security mechanisms.

The KM element should support the process of enhancing the security communication between a

user and a service by setting up a tunnel [13] between gateways which is very useful for users and

services running on low-resources devices. In the IoT environment it is necessary to grant suitable

key management mechanisms that allow two remote devices to exchange security credentials.

It is possible that the known key management systems (KMS) do not apply in an IoT context,

mainly because user and service are in different networks. According to [50] the KMS can be

classified in four categories: key pool framework, mathematical framework negotiation framework

and public key framework, nevertheless they argue that none of them is suitable for IoT

environment, on the other hand the KMS protocols suitable for IoT systems are the Blom [58] which

is a key predistribution method that allows any pair of nodes in a network to be able share a secret

key and the polynomial schema, explained in [59], they are suitable for IoT systems since the

computational power to run them is low in comparison to a Public Key Cryptography (PKC)

operations. Nevertheless several countermeasures are required to manage device authentication

and authorisation. In [60] a list of open source and property software for key management is

provided.

The common behaviour of a KMS is to provide a trusted third party which provides the two

entities the corresponding keys. The goals is to provide a secret key, e.g. if a user and an IoT device

share different secret key and the objective is to provide a secret key to the user and IoT device

share. It would follow the next simple protocol [61]:

 User to KM: {request for session key to IoTdevice}𝑘𝑢𝑠𝑒𝑟

 KM to User: { 𝑘𝑠𝑒𝑠𝑠𝑖𝑜𝑛 }𝑘𝑢𝑠𝑒𝑟 || { 𝑘𝑠𝑒𝑠𝑠𝑖𝑜𝑛 }𝑘𝐼𝑜𝑇𝑑𝑒𝑣𝑖𝑐𝑒

 User to IoTdevice: { 𝑘𝑠𝑒𝑠𝑠𝑖𝑜𝑛 }𝑘𝐼𝑜𝑇𝑑𝑒𝑣𝑖𝑐𝑒

87 Chapter 4 IoTsecM: Methodology and research development

The IoTdevice is now able to decipher the message and uses 𝑘𝑠𝑒𝑠𝑠𝑖𝑜𝑛 to communicate with

User. This is just the basis overviewed performance of a KMS, it has some vulnerabilities and, clearly,

improvements explained in [61]. The KM element aims at describing and modelling the general

behavior of a KMS, therefore some abstract operations need to be regarded such as:

 Key storage: A set of keys is securely stored for a subsequent use.

 Key generation: The KM element should be able to generate proper key when requested.

 Key exchange: In some cases, identical keys needs to be exchanged in others it requires to

share only the public key.

 Crypto-shredding: Delete key data or revoke it.

 Key replacement: It should be able to replace a specific key.

The KM element was modelled applying a stereotype named <<KM>> which, as it should be

known, is a UML extension mechanism. This stereotype models the operation above, it extends the

next metaclasses: class, component, device and block (from SysML). It is depicted in Fig. 25, where

the <<KM>> stereotype definition shown in a UML profile diagram.

Fig. 25 <<KM>> stereotype definition.

As it is seen there is one attribute defined which is an ID and the abstract instructions which

correspond to the KMS functionalities introduced earlier. The operations are: keyStorage,

keyGeneration, keyExchange, cryptoShredding and keyReplacement.

88 Chapter 4 IoTsecM: Methodology and research development

4.2.7 T&R: Trust and Reputation

First the definition of trust and reputation are introduced. According to [62] trust is a particular level

of the subjective probability with which an agent will perform a particular action, both before he

can monitor such action (or independentlu of his capacity ever to be able to monitor it) and in a

context in which it affects his own action. Reputation is an expectation about an agent’s behaviour

based on information about it or observations of its past behaviour according to [63].

The most comon functionalities of a trust and/or reputation models are described in [13] and

introduced below:

 Gathering information: Collect behavioural information about the entities in the system, it

may be obtained through several sources such as direct experiences with the targeted entity,

neighbours, acquaintances, belonging group or organisation and even witness and pre-

trusted entities.

 Scoring and ranking: Once the entity information has been gathered then it will be analised

and scored. This computation could be achieved aplying fuzzy logic, Bayesian networks,

analytic expressions or bio-inspired algorithms.

 Entity selection: The scoring data helps trusting entities to decide which entity interact with

and which is not completely reliable. In the IoT landscape it would mean with which sensor

interact.

 Transaction: Once the sensor to interact to was selected the transaction occurs between both

entities giving a certain service.

 Reward and punishing: When the transaction is concreted, the client entity may asses that

transaction in order to reward or punish the entity (in an IoT context, sensor), who provided

the service.

The reputation needs to consider the low-computational power of some IoT entities such as

sensor, hence such constraints need to be considered, hence being light, scalable, etc. There are

some approaches to target the trust management in IoT systems such as [64] where a encounter-

89 Chapter 4 IoTsecM: Methodology and research development

based and activiy based trust management is proposed, in their proposal two sensors monitor and

rate each other in order to exchange trust evaluation about other nodes, they use as reference

parameters: honesty, cooperativeness and community-interest. Therefore a dynamic trust

management protocol is capable of adaptively adjusting trust parameters. In [50] a brief

introduction to many trust and reputation management systems is provided, those T&R

management systems are classified according to the exploited technique such as: social networking,

fuzzy technique, cooperative approach and identity-based method. They may be aplied in the design

stage after the analysis of the necessity of a trust and reputation management existence is done

besides of where to place it according to the respective IoT system architecture.

In IoTsecM profile the trust and reputation are regarded as an extension as well, where the

extension mechanism applied is a stereotype called <<T&R>> stereotype the name should include

the “or” word as well, nevertheles the name would not be very confortable to write, thus the

<<T&R>> means trust and/or teputation. The <<T&R>>functionalities described above are depicted

as operations within the stereotype definition they are shown in Fig. 26. The operations defined for

this stereotype are gatherInformation, scoreEntity, selectEntity, transaction and rewardPunish,

each one correspond to the general functionalities described above. The <<T&R>> stereotype

includes two attributes the first is the ID and the second is the score of the trust and reputation

processes.

Fig. 26 <<T&R>> stereotype definition.

90 Chapter 4 IoTsecM: Methodology and research development

4.2.8 IM: Identity Management and Ps:Pseudonym

The IoTsecM identity management (IM) is based on [13] approach. In many IoT scenarios it is very

important to protect the identity of users, actors, etc. therefore the information about the identity

must be supplanted applying a pseudonym. This element is related to the <<PS>> stereotype, since

it is the entity which handles the pseudonyms and system identities. The IM issues pseudonyms and

accessory information to trusted subjects. This element protects the user privacy and service

privacy.

A pseudonym is a temporary identity of imaginary subjects which include temporary

credentials as well, access rights depends on the requesting subject therefore, a pseudonym can

request another pseudonym.

The pseudonym generation may be depicted as:

𝑐𝑟𝑒𝑎𝑡𝑒𝑃𝑠 (𝑠1 [𝑠1 , 𝑠2 , 𝑠3, … , 𝑠𝑛], 𝑝 → 𝑠∗)

Where

𝑠𝑖 : is the subject or set of subjects.

𝑠∗: is the requested pseudonym.

𝑝: set of specifications such as key, length, algorithm, access rights, etc.

The generated pseudonym preserves the subject access rights or if it is requested it may

include less rights than the original subject, but it will never contain more rights. The expiration date

possessed by the pseudonym is less or equal than the subject’s one. The request of a pseudonym

should be only requested by a secure channel.

The IM element is the only one that keeps the relation between the pseudonyms and the

subjects. Another functionality of the IM is that when creating a new pseudonym it must update the

access policies in Z element and as a consequence associate a new address to the ID.

91 Chapter 4 IoTsecM: Methodology and research development

Nowadays X.509 certificates only provide a benchmark for building an IoT authentication and

authorisation capability. Vendors support Identity Relationship Management (IRM), organisations

as GlobalSign have begun to build these concepts and support delivery of high volumes of

certificates [7].

Two stereotypes are defined to depict the pseudonyms concern, the <<Ps>> stereotype is an

abbreviation of the pseudonym word and it depicts the requirement of an actor of a pseudonyms,

for instance if an <<IoTdevice>> entitled as “node1” requires a pseudonym, then the <<Ps>> is

depicted as shown in Fig. 27, this will help to identify whose actors protect their identity and as a

consequence the actor’s privacy.

Fig. 27 <<Ps>> stereotype example.

The <<Ps>> stereotype extends the actor metaclass, the constraint metaclass and the

requirement metaclass from SysML. In Fig. 28 the <<Ps>> stereotype definition is shown.

Fig. 28 <<Ps>> stereotype definition.

92 Chapter 4 IoTsecM: Methodology and research development

For the <<IM>> stereotype is applied to depict the identity management mentioned earlier,

it extends the class, component, activity and association metaclasses. It defines three main

operations: verify which verify the assertion in the corresponding <<N>> instance, the

changeRightsInZ operation which change the root identity permissions and assign the previous ones

to the pseudonym generated regarding the constraints mentioned before, the last operation

defined is creates which receives the current identity and some specifications, as it can be noticed

it models the previous behaviour function. The <<IM>> stereotype has two attributes, the first one

is the ID attribute and the second one is a table which contains the links between the original root

entities and pseudonyms generated, it cannot be queried by any external entity, module,

component, etc.

Fig. 29 <<IM>> stereotype definition.

4.2.9 CA: Certification Authority and RA: Registration Authority

It is a trusted entity which is responsible of issue and revoke digital certificates, using a digital

signature, where a public key cryptographic algorithm is applied. The certificates include numeric

IDs and needed passwords besides it makes available the verification process to validate the

provided certificate. The CA legitimates to third entities who trust in the CA certificates the relation

between the actor identity and its public key. Although there is not a normalised process to trust in

93 Chapter 4 IoTsecM: Methodology and research development

CA, it is a fundamental concept for the correct performance, then the entities who request a

certificate from a CA must trust on it.

An AC is normally applied in a public key infrastructure (PKI), where prior to issuing a

certificate, the CA must verify the identity of each actor requesting network access. In order to

achieve it, the requesting actor delivers a certificate signing request (CSR), which contains

information about the organisation requesting the certificate, a public key and the digital signature

created by the requestor’s private key. Then the certificate is generated and signed by using the CA

private key to allow all the network members to validate the authenticity of the certificate and the

identity of its holder. Along with the entity ID, a digital certificate includes essential information

related to the algorithm employed to create the signature, the digital signature of the CA, the

purpose of the public key encryption, signature and certificate validity interval. An example of digital

certificate according to the standard ITU X.509 is illustrated in Fig. 30.

Fig. 30 Certificate structure according to the ITU standard X.509.

94 Chapter 4 IoTsecM: Methodology and research development

The CA services are commonly used in digital communications in TLS protocol, e.g. to

securitize the web communications (HTTPS) or email communications (SMTP, POP3, IMAP)

The CA element is a legacy component which provides certificates that are binding a service

from virtual entities to defined attributes.

In the IoTsecM profile the CA is regarded as an extension to UML/SysML, this modelling

artifact is extended by a stereotype which is named <<CA>>. The <<CA>> stereotype is thought to

be applied as class, component and device in UML, on the other hand in SysML it extends the block

metaclass. The functionalities of the <<CA>> stereotype are: issue a certificate, verify the entity (this

operation is with the registration authority) and revoke the certificate, in order to model this

abstract functionalities three operations were proposed, which are issueCert, verifyEntity and

revokeCert, each one corresponds to the previous functionalities.

Fig. 31 <<CA>> stereotype definition.

<<CA>> stereotype is able participate to verify the identity of the message transmitter when

certificates are supported. Based on the certificates, secure service-based communication can be

established. Other elements such as Z, T&R and N rely on this element to link their activities to the

correct subjects.

95 Chapter 4 IoTsecM: Methodology and research development

The registration authority controls the certificate generation, it realizes the certification

petition and save the corresponding data, it is normally encapsulated in the CA, nevertheless as

IoTsecM aims at covering as many architectures and configurations as possible it is regarded as

another element which is named <<RA>> and it is a stereotype as well. The RA functionalities are:

 Register the user requests to obtain a certificate.

 Verify the user’s data truthfulness.

 Send the request to a CA to be processed.

 The <<RA>> stereotype extends the class and component UML metaclasses and block from

SysML metaclass. It does not extend the device metaclass since it is normally encapsulated in CA

element, nevertheless in order to obtain a greater felixibility in analysis and design stages, it is

regarded to extend the class and component metaclasses. The operations tha <<RA>> includes are

registerActor, verifyActor and sen2CA, which models the functionalities introduced above. The

attributes that <<RA>> stereotype includes are and ID and a register which is the record of the

certificates to be issued.

Fig. 32 <<RA>> stereotype definition.

96 Chapter 4 IoTsecM: Methodology and research development

4.2.10 TP: Tamper Protection

The IoT environment involves many scenarios where physical entity to be observed is located at a

not reachable and exposed place, thus it would be expensive and hard to protect it with

infrastructure or vigilance. The information safeguarding from disclosure implies understand the

physical security needs of an IoT system. According to [49] the physical security affects architectural

design, polices and even technology acquisition. The solution to the physical threats is to attempt

to drive IoT device procurements that include physical tamper protection.

Due to IoT devices and sensors may be deployed in remote places an attacker might tamper

with them and capture them in order to see, delete or modify information. The attacker could

extract cryptographic secrets, modify programs or replace them with malicious nodes. Therefore, a

tamper resistant packaging would assist the defence against the existing threats [65]. The tamper

resistant package would mitigate the physical attacks which threaten the confidentiality, integrity

and vulnerability information as well as actor’s privacy.

In many scenarios the sensors will not include a tamper-proof hardware, therefore an

attacker might gain access to them and impersonate them or see the information stored on the

sensor nodes, some techniques such as shrinking the sensor buffer or a wrap protection should be

regarded, nevertheless if an attacker gain access to the sensor node it would be catastrophic for

instance in the case that a RSA private key were contained there without tamper protection

(implemented in software or deployed on hardware). In [66] a tamper-proof embedded chip (TPM)

is proposed to provides tamper proof generation and storage of RSA keys as well as hardware

support for the RSA algorithm, besides the TPM certificate and the trusted CA certificate must be

stored on the publisher prior to deployment.

Another factor as important as the tamper-proof mechanisms is the tamper-detect, in [67] is

mentioned that systems should provide tamper-evident environments such that any physical

tampering or software tampering by an adversary is guaranteed to be detected.

In IoTsecM profile the tamper protection is regarded. A UML/SysML extension is proposed

named <<TP>> stereotype which means tamper protection and represent the security requirement

of tampering resistance, which means that an entity containing the <<TP>> stereotype must be

97 Chapter 4 IoTsecM: Methodology and research development

consider since analysis and design stage a tamper protection in order to do not be logically or

physically altered.

The <<TP>> stereotype provides a security requirement of tamper protection to entities and

system components (hardware and software), thus it extends the constraint and property

metaclasses from UML, as well as requirement metaclass in SysML. Therefore the <<TP>>

stereotype is able to depict constraints in UML diagrams in order to indicate that a given entitiy

requires to be tamper-proof, besides it is a property hence it can be displayed within a class

property, in order to indicate that such class or class property requires to be protected to tampering.

The <<TP>> stereotype is part of the IoTsecM profile and as a consequence it may be used in a

secure development design process.

Fig. 33 <<TP>> stereotype definition.

4.2.11 BM: Behaviour monitor

The IoT security requirements involve mainly the first defence line, which is normally established by

the <<Z>> and <<N>> stereotype instances, these security mechanisms provide security to some

part of the system, nevertheless there is not a system without vulnerabilities, due to inside or

outside intruders that may exploit wireless communication protocols such as an attack from inside

the 6LoWPAN network and from the Internet. Therefore, another defence line is needed where a

security control be able to monitor the system behaviour in order to detect the malicious behaviour

of the then report it and in some cases act on it. In a passive systems, the behaviour monitor detects

a possible intrusion, store the information and sends an alert signal that is stored in a database. In

98 Chapter 4 IoTsecM: Methodology and research development

a reactive system the behaviour monitor reacts to the suspicious activity reprograming the firewall,

if it is the case, or updating the policies within the <<Z>> stereotype in order that it can block the

traffic which comes from the attacker. The analogy to the classical security mechanisms are:

Intrusion Detection system (IDS) and Intrusion Protection System (IPS). The IDS monitors the

operations in a network, alerting the system administrator when it detects a security violation.

According to [68], currently, there are no IDSs that meet the requirements of the IPv6-connected

IoT since the available approaches are either customised for Wireless Sensor Networks (WSN) or for

the conventional Internet, besides applying traditional IDS techniques to IoT is difficult due to its

particular characteristics such as constrained-resource devices, specific protocol stacks and

standards.

The IoT systems are composed of devices with resource constraints in many cases, hence one

concern to implement a IDS in an IoT system is to find nodes which comply with the computational

resources to support a IDS, besides it must be located in a place where the IDS be relevant, thus it

is not an easy work to find where to implement an IDS when the systems is being deployed,

therefore from the first design stage they should be considered, in order to provide an architecture

and devices which support the behaviour monitor.

Within IoT systems, the behaviour monitor may be located in the border router, in one or

more dedicated hosts, or in every physical object [69]. The advantage of placing the IDS in the border

router is the detection of intrusion attacks from the Internet against the objects in the physical

domain. In [69] taxonomy of IDSs for IoT systems is provided besides of a survey of the principal

approaches to IDSs within the IoT or technologies related to them.

The IoTsecM profile proposes an abstract module which allows the behaviour monitoring of

some or specific system part. The analysis of the network traffic, the port scanning and the

malformed packets are some of the functionalities of this element. This approach addresses the

behaviour monitoring security requirement proposing a UML extension mechanism, which is a

stereotype named <<BM>> which encapsulates all the semantic described in this section, besides it

can be properly placed since the analysis stage, then, if the stakeholders and developers decide it

so, the devices and components will be bought in order to guarantee that the chosen IDSs can run

without resources concerns. In order words once the decision of an IDS in the system is taken, then

the hardware and software to support can be proposed.

99 Chapter 4 IoTsecM: Methodology and research development

The <<BM>> stereotype addressed the necessity of a behaviour analyser in the system

extending the metaclasses: component and device component from UML and the block metaclass

from SysML. The <<BM>> stereotype defines two properties: an ID and a BMType whixh can be an

IDS or IPS. There are three operations defined which correspond to the behaviour of the <<BM>>

stereotype, these operations are: analyzeTraffic, scanPorts and reviwePackets.

Fig. 34 <<BM>> stereotype definition.

100 Chapter 5 Application of IoTsecM profile and results discussion

5 APPLICATION OF IOTSECM PROFILE AND RESULTS DISCUSSION

The IoTsecM profile was presented in chapter 4, in this chapter the profile application is described

in order to validate its usability in a real-life IoT system. The IoTsecM profile was applied in two

systems, the first one is related to autonomous vehicles and the second one is related to an m-

health system.

As it was described IoTsecM profile addresses the designing and modelling of IoT systems

considering a security architecture, it helps to depict the system security concerns and nevertheless,

the security mechanisms should be in an accurate place, in order to protect the system against a

real threat or attack. Once the possible attacks over the system are identified then the developer

will be able to figure out a way to provide protection or countermeasures against those attacks,

therefore, they would be able to find the right place for the right countermeasure for a particular

attack or threat.

Threat modelling can be achieved by different ways, there is not a unique methodology which

helps to mitigate the system risks. The main threat modelling objective is to know the system threats

and vulnerabilities, which surely would be exploited by a motivated attacker if countermeasures are

not there to prevent them. More about threat modelling can be found in [70]. Microsoft proposes

another approach which uses multiple steps to determine the severity of threats, this approach is

referred to as Microsoft SDL [71]. The approach applied for the threat modelling is described in each

study case.

In this chapter two study cases are presented, threat modelling and attack trees are obtained

for each case. Based on the analysis performed, and using the IoTsecM profile proposed, security

countermeasures are derived and represented in the IoT system’s architecture.

101 Chapter 5 Application of IoTsecM profile and results discussion

5.1 AUTONOMOUS VEHICLES

The first case of study considered to verify the applicability of IoTsecM is within the smart cities

domain, and specifically it is related to an autonomous vehicles system. In the system, not only

autonomous vehicles are considered but also the interaction of these with other assets such as city

infrastructure sensors and traffic lights. This case of study is a real-life project named Flourish [71].

It runs from June 2016 to May 2019 and the main project’s objective is to find innovative solutions

related to customer interaction, connectivity, data analytics and safe design for collaborative

autonomous vehicles (CAVs). The system overview is shown in Fig. 35.

Fig. 35 Flourish project overview.

The Flourish project covers many knowledge areas; however, the main topic concerns the

design of secure CAVs. The objective of the introducing IoTsecM into Flourish is to provide an

application architecture where the security mechanisms and controls are depicted and modelled in

order to enable secure, trustworthy and private technology within the CAVs and the whole

infrastructure.

The Flourish project undertakes simulated and real world tests of communication systems in

order to develop products and services for the market. Hence, IoTsecM focuses on the security

modelling design process for communications and privacy issues. The IoTsecM extensions provide a

102 Chapter 5 Application of IoTsecM profile and results discussion

notation and semantics which model and depict the security concerns in the system architecture

model.

There are many threats in the Flourish environment, the assets may be targeted by numerous

cyber-attacks and they are exposed to many motivated and not motivated attackers, since the CAVs

will be moving along the city and they can be easily reached as well as its communication flow.

In order to identify the security concerns a first approach was developed by the Flourish team,

where general security requirements were regarded in order to propose the first application

architecture. However, they just considered general attacks such as Denial of Service (DoS),

jamming, Sniffing, tampering, spoofing, etc., but these attacks were not related to the system

architecture. In addition, a threat modelling or any method to model the attacks or attacker was not

developed. This kind of analysis would allow identify vulnerabilities and new attacks may be

identified, therefore a MBSE process is needed for this work, besides it would validate the security

mechanisms they proposed and would add others. Furthermore, the use of IoTsecM profile will

make possible to identify new security requirements, therefore the IoTsecM helps to place rightly

the security mechanisms within the system architecture and identify and depict the previously

proposed security mechanisms working together with the new ones.

Threat modelling helps to identify threats and threat sources, it provides a methodological

approach to perform a security evaluation of a system.

In this work, the process followed to perform the threat modelling and security

countermeasures analysis and design is based on [49]; however, this process was customised and

extended in order to add the countermeasures modelling, the process followed is summarised into

the next steps:

 Identify the assets

 Create an IoT system architecture overview

 Decompose the IoT system

 Identify threats

 Document threats

 Propose counter-measures for each threat

 Propose a system architecture depicting security countermeasures

103 Chapter 5 Application of IoTsecM profile and results discussion

As it was written earlier, the Flourish project involves autonomous vehicles communicating

to each other and with human driven vehicles (HDV) and to road side units (RSU). This

communication is referred to as V2X, vehicle to everything. The system architecture overview

consists mainly in CAVs, which are autonomous vehicles that are traveling around the city; also there

are people who use the CAVs as a transport medium. The RSU are the communication hubs that are

strategically located in order to communicate to the CAVs and to diverse processing centres.

Therefore, the system architecture overview consists of those three assets categories:

 CAV

 RSU

 Processing nodes

Although the system architecture looks simple, it is not, it consists of many different assets,

and those assets were obtained following the scenarios described by the Flourish team. Those

scenarios are not described in this work since they are part of the internal deliverables and must

remain confidential; nevertheless, the assets list is shown below, since the assets identification

allows an understanding of what must be protected. The assets are system components which are

of interest to an attacker; therefore, they can be hardware, software, physical entities or even

humans. The assets were obtained analysing the scenarios provided by the Flourish team, who

described each scenario as general system use cases. The assets list is shown in Table 5 Flourish

assets.

Table 5 Flourish assets

Asset Description

LIDAR It is a sensor located in strategic places and it

creates BBR data (data monitored from other cars)

CAVs The collaborative autonomous vehicles.

RSU The road side unit

BBR data Data created by the LIDAR about what it observes

BBR+ feed data The same BBR data plus new observations

RSU instructions Data send from RSU to CAVs

Traffic signal control data Data sent from a control centre to control the

traffic signals

104 Chapter 5 Application of IoTsecM profile and results discussion

Optimisation of traffic signal control

data

Optimisation of data sent from control centre to

control the traffic signals

Control node Is the node dedicated to elaborate CAVs

manoeuvring actions when receives information

related to HDV intentions and CAVs driven

intentions.

CAVs manoeuvring actions data Is the main result of the control node processing

unit, it indicates to CAVs the new manoeuvring

actions

Motion description of HDV data It is the data within the RSU which describes the

motion description of HDV

Carer Is the person dedicated to activate the point in

order to establish a special zone which is a

restriction zone for special requirements such as

slow traffic

Point to activate especial zone Is the point dedicated to send the request for a

special zone

Request for exclusion zone data Is the request send by the carer through the special

point to the RSU in order to broadcast it to the

CAVs

Special zone information Information about the special zone requested such

as duration, space restrictions, etc.

Network Rules Engine (NRE) It is the processing node dedicated to provide

routing advisory and communicates to the

Network AI Unit

Congestion reduction data It is data generated from the NRE and related to

reduce the congestion on roads

Network AI unit It is the artificial intelligence unit which use

machine learning methods to improve the routing

advisory for CAVs

105 Chapter 5 Application of IoTsecM profile and results discussion

Machine learning method It is the machine learning method applied by the

Network AI unit

Congestion prediction information It is the result of the machine learning method and

it is a prediction of the congestion on roads

Routing advisory data It is the data to advise the CAVs with new routes in

order to reduce the traffic

Control room It is another processing node which gives priority

to roads

Control algorithms They are the algorithms that are contained within

the control room and are used by it as well

Instructions data It is the result data delivered by the control room

and sent to CAVs through the RSU

On board sensors They are sensors located within the CAV mainly

thought to monitor passengers

Vehicle level AI unit The artificial intelligence unit within the CAVs

Autonomous control system The subsystem which carries out the CAVs control

Once the assets were identified the next step, following the threat modelling described

earlier, is to create a system/architecture overview, this step affords the IoT system functionality.

For this part the scenarios provided by the Flourish team were very useful as well, since they

described the system use cases and therefore the system functionality; however, the architecture

view of the system regarding the security issues is proposed in this section where the interactions

and system assets appear together conforming the Flourish IoT system.

The system architecture is depicted in UML class diagram, it considers the assets identified

before and their connections. As it can be seen in Fig. 36 there are three main components within

the architecture: CAVs, RSU and intelligent transport systems (ITS) central station.

106 Chapter 5 Application of IoTsecM profile and results discussion

Fig. 36 Flourish architecture overview.

The CAVs holds the on-board sensors, the vehicle level AI unit and the autonomous control,

besides it contains some attributes such as an ID and its driven intensions. The operations that the

CAVs holds are: feedBBR, receiveInstructions, broadcastDrivenIntensions, broadcastMotionHDV,

readManoeuvringActions, provideODinformation, avoidCongestion, receiveRoutingAdvisory and

aggregateODInformation, each one of these instructions corresponds to one functionality described

in the scenarios, e.g. the broadcastDrivenIntensions operation correspond to the use case of

manoeuvring collaboration where CAVs must broadcast its driven intentions to other CAVs in order

for them to correctly react to the new movements and even predict new driven intensions. Due to

confidentiality issues the scenarios are note completely described in this work.

The communication channel between CAVs and RSU may be achieved through two ways, the

first one is by 3G/4G technology and the second one is by the ITSG5OBU, which is related to the

infrastructure proposed by the Flourish team, this two ways allow the CAVs to send and receive data

from the RSU.

The RSU opperations are: readBBRdata, broadcastOptimalSpeed, broadcastBBR,

broadcastTrafficControl, priorityWeight, deploymentVirtualBoxJunction,

trafficSignalControlOptimisation, forwardInformation2ControlNode, receiveSpecialZoneReq,

receiveODinformation and forwardODinformation. The principal RSU functionality is to receive

information from the processing nodes and forward data to the CAVs. The operations correspond

to the different kinds of data that the RSU must forward.

107 Chapter 5 Application of IoTsecM profile and results discussion

The ControlNode class models the control node identified as asset, the operations defined to

model the control node behaviour are: receiveInformationStreams,

elaborateCAVsManoeuveringActions and sendManoeuveringActions. Those operations are related

to the collaborative manoeuvring actions, the actions are calculated in the control node and sent to

the RSU in order for the CAVs to receive them and act according to them.

The network rules engine asset is modelled with the NRE class which contains next

operations: provideRoutingAdvisory, aggreagateODinformation, aggregateExistingFlows,

predictCongestion and FindParkingAvailability. The operations defined for the NRE class model the

NRE behaviour such as to find parking availability, predict congestion, etc.

The network AI unit is modelled with the NetworkAIunit class therefore, its operations

correspond to the network AI unit behaviour. The control room is modelled with the ControlRoom

and its operations (controlAlgorithm, SendInstructions, givePriorityRoads and calculateCityCicles)

are focused on give priority to certain roads and send instructions to the RSU. The special zone point

is modelled with the PointToSpecialZone class which is displayed on the Flourish architecture, the

main functionality of this asset is to send the request for a special zone, thus the

sendSpecialZonRequest is proposed to model that behaviour. The carer is the person who activate

the special zone through the point dedicated to activating it, this asset is modelled by the Carer class

and it includes one operation activatePoint. LIDAR is the asset which monitors the CAVs and HDV, it

obtains and creates data about the movements, the operations defined for the LIDAR class are

createBBRFeed and generateBBR. NoCAVs is the class which models the HDV vehicles and other

motioned objects that the LIDAR may observe.

The Flourish architecture includes all the classes described before, once the system

architecture is already understood then it is time to identify the threats. In order to address the

threat identification an intuitive and graphic notation is needed, since at this stage the system has

not been deployed yet, and all the analysis is done with graphic representations. Therefore, attack

trees diagrams are proposed to address the threat identification.

AAttack trees are an orderly and sequential way of describing the sub-attacks to violate a

system, they are a useful tool to conceptualize and visualize the possible attacks, where the designer

must put himself in the attacker's shoes to devise all the different ways in how an asset can be

violated. This analysis results in the underlying root causes of attacks, allowing the analyst to create

108 Chapter 5 Application of IoTsecM profile and results discussion

attacker profiles, in order to make decisions about the possible mechanisms and security controls

needed to protect the system from some attack profiles and thus reducing the attack surface.

Building an attack tree is not an easy job since it must consider, as far as possible, the entire

attack surface and it may be difficult to figure out all of them. It is recommendable to do it within a

working group where at least two people can build it together. A tool is needed for this purpose, in

this work the one named SecureItree, an attack tree modelling tool built by the Canadian company

Amenaza (the Spanish word for threat) [72], was used . In this tool the root node represents the end

objective and the children nodes depict the different sub attacks in order to accomplish the

overarching goal. The nodes can be AND operator, OR operator, or a LEAF. The AND operator means

that all of the children nodes are needed to accomplish the parent node, on the other hand, the OR

operator means that any of the children nodes satisfy the parent node.

One of the underlying concerns for the Flourish system is the communication flow; hence, the

first threat to be modelled is related to the communication between the CAVs and the RSU as

depicted in Fig. 37. The threat identified is named Block communication channel from CAVs to RSU,

this would interrupt any communication between those assets, attacking the availability of the

system. The sub attacks regarded to achieve the goal are:

 Jamming data from CAVs to RSU: This kind of attack is very common to compromise a wireless

environment such as the communication between the RSU and CAVs, the goal is to drop the

signal to a level where the communication is interrupted. Typically the older wireless area

networks are the most vulnerable to the success of this kind of attack, since the actual

networks are able to adapt to unintentional or intentional interference. The countermeasure

proposed for this attack is an intrusion prevention system (IPS), since it should be able to

detect the presence of any unauthorised client device.

 Turn off power: this attack is related to turn off power from the car, there are two ways to

achieve it, break into the car, which may be by brute force, in this case a countermeasure is

to enforce the car doors locks. The other way to turn off the power is if a malicious passenger

gets in the car, this kind of attack may be achieved with social engineering, where the

malicious passenger obtains authorised credentials; in this case the countermeasure

proposed is to enforce the policies to get entry into the CAVs.

109 Chapter 5 Application of IoTsecM profile and results discussion

 Block communication channel by DoS attack: This attack consists in send many requests to

the CAVs or to the RSU in order to make them attend just the false and mal formed requests

whereas they deny any other request even the authenticated requests. The countermeasures

against this attack is an intrusion detection system (IDS) or IPS.

Fig. 37 Block communication from CAVs to RSU attak tree.

The next threat is the spoofing of BBR data, this means that an attacker is able, somehow, to

masquerading himself as another actor in order to falsify data, in this case the BBR data which is

generated by the LIDAR sensor. In other words this threat describes the BBR data falsification In this

case we are focusing on the leaf attacks, since blocking this attacks would be able to thwart the

complete vector attack. . The attack tree considered for this threat involves the next sub attacks:

110 Chapter 5 Application of IoTsecM profile and results discussion

 Tamper the on-board sensors: This attack means that the on-board sensors are manipulated

by an attacker who is able to change the data which is reading the sensor in order to create

false information and as a consequence change the BBR data from CAV. The countermeasure

for this attack is hardware and software tamper-proof for the on-board sensors, in this way

the attacker which at this point has reached the sensors physically will not be able to perform

the tamper attack.

 Impersonate the CAV sensor node: Another way to change the BBR data from CAV is a man

in the middle (MITM) attack. If an attacker is able to impersonate the CAV sensor node, then

it can receive and change the on-board sensors data. Therefore, the countermeasure for this

attack is the authentication of the on-board sensors, in order to guarantee that sensors are

who they claim to be.

 Create a fake RSU: This attack consists in create a false RSU in order to perform a MITM attack,

in this way the LIDAR would not be able to identify the false RSU, would trust on it and it

would share the BBR data. The countermeasure proposed against this attack is the

authentication of the RSU, besides, a trust and reputation scheme would help a lot to mitigate

this kind of attacks.

 Create a fake processing node: It is very similar to the last attack. However, the MITM attack

here is deployed between the LIDAR and some of the processing nodes. The countermeasure

proposed to mitigate this threat is the authentication of the LIDAR and a trusted processing

node.

 Tampering into the LIDAR: The most despicable way to attack the system is to tamper the

LIDAR, this means that a well-motivated attacker performs a physical tamper to the LIDAR, in

order to change the data which is about to send. Because of this potential attack a tamper

protection for the software and hardware is required in the LIDAR.

111 Chapter 5 Application of IoTsecM profile and results discussion

Fig. 38 Spoofing BBR data attack tree.

The next attack tree documented regards the carer impersonation threat and it is depicted

in Fig. 39. This threat involves the carer which is the person that activate the point in order to

request a special zone. Therefore, the carer impersonation implies that the attacker is able to

activate at least one especial zone with the goal of alter the traffic flow. As in the last attack tree

the presentation of the leaf attacks is described aiming at proposing countermeasures, since the

leaf attacks are mitigated then the corresponding vector(s) will be thwart.

 Social engineering: An attacker provides authentic credentials to the activation point, with

the application of social engineering. The countermeasure for this attack is the activation

point access policies strengthen and the carer authentication.

 MITM attack between the activation point and the RSU: An attacker is placed between the

activation point and the RSU, he captures the activation point signal and he is able to send it

at any time. Therefore, he creates a fake RSU. The countermeasure against this attack is to

authenticate the activation point.

112 Chapter 5 Application of IoTsecM profile and results discussion

 Fake activation point: Place in the right location a fake activation point in order to avoid the

special zone request. The authentication of the activation point is the countermeasure to

prevent this attack.

 Study the carer’s routines: This attack is part of a plan to kidnap the carer, this attack resides

out of the scope of the Flourish project, nevertheless the recommendation for the carer is

that all its personal information should be encrypted in order to do not allow the attacker to

read his routines, habits, etc.

 Brute force: to force the carer to activate the special zone, this attack also resides out of the

scope of the security concerns for the Flourish system.

Fig. 39 Carer impersonation attack tree.

The next attack tree regards the jamming of the RSU communication, in this case the attacker

objective is to block all the RSU communication and this means that it would not be able to transmit

or receive any data; this attack tree is displayed in Fig. 40. The risk of the success of this attack is

that, one part of the system would not work properly since the RSU is the intermediary between

CAVs and almost any other asset within the system. The sub-attacks considered to reach this threat

are:

113 Chapter 5 Application of IoTsecM profile and results discussion

 Jamming radar implementation: This radar creates a signal of the same RSU signal frequency

in order to interrupt the RSU communication. The countermeasure is an IDS or IPS running in

the RSU aiming at identifying the jamming radar and block its interruption.

 Create false CAVs requests: This attack is a DoS attack, it is targeted to the RSU, consisting in

creating false CAV requests. The countermeasure against this attack is an IDS or IPS in the

RSU.

 Shut down the RSU: The way to shut down the RSU is gaining access to the place where it is

located. Therefore, the countermeasure against this attack is a tamper protection for the RSU.

 Flashing the RSU data: The way to reach this attack is split in two ways, the first is breaking

into the RSU and the second is with remote control. For this attack the countermeasure

regarded is a tamper protection for the RSU.

Fig. 40 Jamming the RSU communication.

114 Chapter 5 Application of IoTsecM profile and results discussion

The next attack tree is named Spoof RSU instructions (Fig. 41), this attack tree is related to

the spoofing attack described before but against the RSU. At this attack tree almost the

explanation of all the attacks was provided, thus in some cases only the countermeasure is

described. The sub attacks regarded are:

 MITIM attack between RSU and CAVs: The countermeasure to this attack is the CAVs

authentication and authorization.

 Tampering the RSU: The countermeasure against this attack is a tamper protection for the

RSU.

 Remote access to the RSU: The countermeasure against this attack is a tamper protection and

well-defined policies in the authorization mechanism.

 MITM attack between LIDAR-RSU: The countermeasures against this attack are the

authentication of the LIDAR and the LIDAR data encryption.

 MITM between the CAVs and RSU: Against this attack, the countermeasures proposed are

the authentication of the CAVs and the CAVs data encryption.

 Spoofing LIDAR: This attack was regarded earlier and the countermeasures are described in

the BBR data spoofing attack tree.

 Jamming LIDAR: The countermeasure against this attack is an IDS or IPS control placed in the

RSU.

 Spoofing CAV output: The countermeasure against this attack is the CAV authentication.

 Jamming CAV output: For this attack the countermeasure proposed is an IDS or IPS in the RSU

and in the CAV.

115 Chapter 5 Application of IoTsecM profile and results discussion

Fig. 41 Spoofing RSU output data attack tree.

The last attack tree regarded for the Flourish security design is the Flashing Control Node

data depicted in Fig. 42. The attacks presented below correspond to the leaf attacks, at least one

countermeasure is provided for every attack presented below:

 Sniffing data traffic: There were two sub-attacks regarded to reach this attack, they are a

back-door creation and MITM attack. The countermeasure provided for these two attacks

are IPS or IDS implementation in the processing focusing on the port scanning.

 Provide right credentials to reach remote access: Authentication and authorization

mechanisms are needed for any asset that tries to communicate to the processing node.

116 Chapter 5 Application of IoTsecM profile and results discussion

 Tampering control node: The logical countermeasure against this attack is a tamper

protection for hardware and software.

Fig. 42 Flashing Control Node data attack tree.

Once the attack trees were analysed and the countermeasures were identified, it is time to

know where they have to be placed. The first approach to the location and identification for the

countermeasures is in the countermeasure description presented earlier.

The IoTsecM profile includes some extensions to the use cases metaclasses. The first

approach to the system architecture is to identify which system actor carries out the security

117 Chapter 5 Application of IoTsecM profile and results discussion

countermeasures identified before. Therefore, according to the scenarios proposed by the Flourish

team the use case diagrams for each scenario adding the security countermeasures are provided.

The first scenario described is about the LIDAR and its interactions with the CAV and RSU. The

use case diagram related to this scenario is depicted in Fig. 43, for this and the text use cases the

only use cases explained are the concerned to the security countermeasures identified. For this

scenario the use cases identified are shown in Fig. 43.

Fig. 43 LIDAR sceneario use case diagram.

The use case concerned to the countermeasures are presented in tables 6 to 20, the tables

comprises next fields: Use case name, participating actor, entry condition, flow of events and exit

condition.

118 Chapter 5 Application of IoTsecM profile and results discussion

Table 6 <<C>> use case for CAV, scenario 1.

Use case name:

<<C>> Encrypts

Participating actor:

CAVs

Entry condition:

The CAVs receives data from RSU and authenticate and decipher them.

Flow of events:

The CAVs actor read the on-board sensors,

It obtains the feed BBR data

Encrypts them with the RSU public key and send them to the RSU.

This use case extends the Feed BBR data (BBR+feed) use case

Exit condition:

The data package is signed and sent by the CAVs to the RSU

Table 7 <<N>> authenticates use case for CAV, scenario 1

Use case name:

<<N>> authenticates

Participating actor:

CAVs

Entry condition:

An entry package is sent from RSU

Events flow:

The package is received.

The CAVs actor runs the authentication element.

The <<N>> element obtains the RSU credentials from the package.

The <<N>> stereotype instance creates complementary information from de credentials

The <<N>> stereotype instance runs the authentication function.

The <<N>> creates the assertion {True, False}.

119 Chapter 5 Application of IoTsecM profile and results discussion

This use case extends the Receives RSU instructions use case and Receives data from RSU

use case

Exit condition:

The CAVs authenticate the package received

Table 8 <<D>> Deciphers1 use case for CAV, scenario 1.

Use case name:

<<D>> Deciphers1

Participating actor:

CAVs

Entry conditions:

True assertion from the <<N>> stereotype use case (authenticates).

The <<D>> stereotype instance holds the CAVs private key according to the pseudonym

at the moment.

Events flow:

The <<D>> Deciphers1 obtains the private key.

The <<D>> Deciphers1 apply the decryption algorithm.

The data from the RSU is in plain text now for the CAVs interpretation.

Exit condition:

The data decryption was correctly done.

Table 9 <<C>>RSUEncrypts use case for RSU, scenario 1.

Use case name:

<<C>> RSUEncrypts

Participating actor:

RSU

Entry condition:

Package ready to send, this means that all the use cases send data to CAVs.

Events flow:

The RSU package all the data to send to CAVs.

120 Chapter 5 Application of IoTsecM profile and results discussion

The RSU actor use the CAV public key to encrypt the data.

The RSU signs the package.

The RSU fulfil the package adding its credentials.

Exit condition:

The encryption process was successfully done.

Table 10 <<N>> use case for CAV, scenario 1.

Use case name:

<<N>> RSUAuthenticates

Participating actor:

RSU

Entry condition:

Receive data from the LIDAR

Events flow:

The package is received.

The RSU actor runs the authentication element.

The <<N>> element obtains the LIDAR credentials from the package.

The <<N>> stereotype instance create complementary information from de credentials

The <<N>> stereotype instance runs the authentication function.

The <<N>> creates the assertion {True, False}.

This use case extends the Read BBR data instructions use case.

Exit condition:

The RSU authenticates the package received.

121 Chapter 5 Application of IoTsecM profile and results discussion

Table 11 <<BM>> implements an IPS use case for RSU, scenario 1.

Use case name:

<<BM>> implements an IPS

Participating actor:

RSU

Entry condition:

Receive data from the LIDAR.

IPS preconfigured.

Events flow:

The RSU calls the <<BM>> Implements a preconfigured IPS.

According to the intrusion detected the IPS reacts.

The IPS upgrade the policies in the <<Z>> element

Exit condition:

The <<BM>> instance is running rightly

Table 12 <<D>> RSUDecrypyts use case for CAV, scenario 1.

Use case name:

<<D>> RSUDecrypts

Participating actor:

RSU

Entry condition:

The RSU reads the BBR data.

Events flow:

The <<D>> RSUDecrypts obtains the private key.

The <<D>> RSUDecrypts applies the decryption algorithm.

The BBR data is in plain text now for the CAVs interpretation

This use case extends the Read BBR data.

Exit condition:

The data decryption was correctly done.

122 Chapter 5 Application of IoTsecM profile and results discussion

Besides of the security use cases defined before, there are other constraints displayed on the

use case diagram which are placed there to integrate more security concerns within the diagram.

The CAVs must be authorized actors; this is depicted with a “Z” over the actor´s head, which means

an authorization constraint for all the CAVs actor instances. A pseudonym must be assigned to each

CAV, this is depicted with the stereotype <<PS>> applied to the CAVs actor. This means that the

security resolution unit provides pseudonyms certificates. It is very common for such certificates to

be temporal, hence, the certificates are revoked in a short time, in order to guarantee the privacy

of CAVs.

There are two links identified as secure communications constraints. The links are the

Receives data from RSU and send data to CAVs where the communication from RSU to the CAVs is

established. The other Secure Communication ({SC}) constraint appears in the link between the

LIDAR and the RSU.

The LIDAR needs to be an authorized actor in order to be able to send data to the RSU. The

RSU needs to be authenticated, thus the “N” text box is placed over its head.

The next scenario regarded to collaborative manoeuvring between the CAVs and between

CAVs and HDV (Fig. 44). The scenario is not utterly described, nevertheless the uses cases related to

the security countermeasures are presented in tables comprises with the fields shown before.

123 Chapter 5 Application of IoTsecM profile and results discussion

Fig. 44 Collaborative manoeuvring scenario use case diagram.

Table 13 <<N>>authenticates use case for RSU, scenario 2.

Use case name:

<<N>> authenticates

Participating actor:

RSU

Entry condition:

The RSU receives the CAV driven intentions and the HDV motion description

Events flow:

The package is received.

The CAVs actor runs the authentication element.

The <<N>> element obtains the CAV credentials from the package.

124 Chapter 5 Application of IoTsecM profile and results discussion

The <<N>> stereotype instance create complementary information from de credentials

The <<N>> stereotype instance runs the authentication function.

The <<N>> creates the assertion {True, False}.

This use case extends the Broadcast driven intensions use case and Broadcast motion

description of HDV use case

Exit condition:

The RSU authenticates the CAV which broadcast the data

Table 14 <<BM>>authenticates use case for RSU, scenario 2.

Use case name:

<<BM>> implements an IPS

Participating actor:

RSU

Entry condition:

Receive data from the CAV.

IPS preconfigured.

Events flow:

The RSU calls the <<BM>> Implements a preconfigured IPS.

According to the intrusion detected the IPS reacts.

The IPS upgrade the policies in the <<Z>> element.

The <<BM>> implements an IPS use case extends the forward information to the control node

Exit condition:

The <<BM>> instance is running rightly.

The IPS is monitoring.

Table 15 <<C>>encrypts use case for CAV, scenario 2.

Use case name:

<<C>> encrypts

Participating actor:

125 Chapter 5 Application of IoTsecM profile and results discussion

CAV

Entry condition:

The CAV receives data from the on-board sensors.

Flow of events:

The CAV creates its driven intentions data payload.

The CAV creates the motion description of HDV data payload.

The <<C>> instance retrieves the control node public key.

Encrypts the data using the control node public key.

The CAV signs the package using its temporal certificate.

This use case extends the Broadcast driven intentions use case.

This use case extends the Broadcast motion description of HDV use case.

Exit condition:

The data package is signed and sent by the CAVs to the RSU

Table 16 <<N>>CAVAuthenticates use case for CAV, scenario 2.

Use case name:

<<N>> CAVAuthenticates

Participating actor:

CAV

Entry condition:

An entry package is sent from the control node containing the manoeuvring data.

Events flow:

The package is received.

The CAV actor runs the authentication element.

The <<N>> element obtains the control node credentials from the package.

The <<N>> stereotype instance creates complementary information from de credentials

The <<N>> stereotype instance runs the authentication function.

The <<N>> creates the assertion {True, False}.

This use case extends the Receives manoeuvring actions use case.

126 Chapter 5 Application of IoTsecM profile and results discussion

Exit condition:

The CAVs authenticate the package received

Table 17<<D>>Deciphers use case for CAV, scenario 2.

Use case name:

<<D>> Deciphers

Participating actor:

CAV

Entry conditions:

True assertion from the <<N>> stereotype use case (authenticates).

The <<D>> stereotype instance holds the CAVs private key according to the pseudonym at

the moment.

Events flow:

The <<D>> Deciphers obtains the private key.

The <<D>> Deciphers apply the decryption algorithm.

The data from the control node is in plain text now for the CAVs interpretation.

Exit condition:

The data decryption was correctly done.

Table 18 <<C>>ControlNodeEncrypts use case for Control Node, scenario 2.

Use case name:

<<C>> ControlNodeEncrypts

Participating actor:

Control Node

Entry condition:

The control node already calculated CAVs manoeuvring actions

Flow of events:

The control node creates CAVs manoeuvring data payload.

127 Chapter 5 Application of IoTsecM profile and results discussion

The <<C>> instance retrieves the corresponding CAVs public keys.

Encrypts the data using the CAVs public keys.

The control node signs the package.

This use case extends the Send manoeuvring use case.

Exit condition:

The data package is signed and send by the control node to the CAVs

Table 19 <<D>>Deciphers use case for Control Node, scenario 2.

Use case name:

<<D>> Deciphers

Participating actor:

Control Node

Entry conditions:

True assertion from the <<N>> stereotype use case (authenticates).

The <<D>> stereotype instance holds the control node private key.

Events flow:

The <<D>> Deciphers obtains the private key.

The <<D>> Deciphers apply the decryption algorithm.

The data from the CAVs about their motion description of HDV and the CAVs manoeuvring

intentions is in plain text now for the control node interpretation.

Exit condition:

The data decryption was correctly done.

Table 20 <<BM>>Control node use case for Control Node, scenario 2.

Use case name:

<<BM>> implements an IPS

Participating actor:

128 Chapter 5 Application of IoTsecM profile and results discussion

Control node

Entry condition:

Receive information streams from CAVs forwarded by the RSUs.

IPS preconfigured.

Events flow:

The Control Node calls the <<BM>> Implements an IPS.

According to the intrusion detected the IPS reacts.

The IPS upgrade the policies in the <<Z>> element.

The <<BM>> implements an IPS use case extends the Receives information stream use case

Exit condition:

The <<BM>> instance is running rightly.

The IPS is monitoring.

The last constraints related to this scenario are depicted on the use case diagram as well, they

are the authorization requirement for CAVs, the authorization requirement for the RSU and the

authentication requirement for the Control Node. The communication links with the {SC} constraint

added on them are the links that connect the Control Node and CAV where deuce the Send

manoeuvring actions and Receives manoeuvring actions use cases are linked. There are new

requirements for the CAV and the RSU, for the CAV a <<TP>> stereotype is needed in order to

request a tamper protection for the hardware and software within the CAV besides of the <<SS>>

stereotype which indicates that a secure storage is needed there as well. For the RSU a <<TP>>

stereotype is depicted as well.

The next scenario analysed is related to especial zones assets, which involves the Carer, RSU

and CAVs actors. The use case diagrams for this scenario is shown in Fig. 45. As in previous

scenarios each use case that targets the security countermeasures identified is presented in a

table.

129 Chapter 5 Application of IoTsecM profile and results discussion

Fig. 45 Special zone request scenario use case diagram.

Table 21 <<N>>CarerAuthenticates use case for Carer, scenario 3.

Use case name:

<<N>> CarerAuthenticates

Participating actor:

Carer

Entry condition:

An activation point is previously installed in place.

Events flow:

The carer verifies the activation point.

The carer types its password on it.

This use case extends the activate point use case

Exit condition:

The carer authenticates itself in the activation point.

Table 22 <<Z>>RSUAuthorizes use case for RSU, scenario 3

Use case name:

<<Z>> RSUAuthorizes

Participating actor:

RSU

130 Chapter 5 Application of IoTsecM profile and results discussion

Entry condition:

A request was sent from the activation point for a special zone.

Events flow:

The RSU verifies the activation point authenticity.

The <<Z>> instance authorize the activation point requester to communicate to the CAVs.

The <<Z>> Authorizes use case extends the Receive request for a special zone.

Exit condition:

The RSU authorises the activation point.

Table 23 <<BM>> monitors the packets received use case for CAV, scenario 3.

Use case name:

<<BM>> monitors the packets received

Participating actor:

CAV

Entry condition:

Receive request for a special zone.

IPS preconfigured.

Events flow:

The CAV calls the <<BM>> Monitors the packet received.

According to the intrusion detected the IPS reacts.

The IPS upgrade the policies in the <<Z>> element.

The <<BM>> implements an IPS use case extends the Receives information stream use case

Exit condition:

The <<BM>> instance is running rightly.

The IPS is monitoring.

131 Chapter 5 Application of IoTsecM profile and results discussion

Table 24 <<Z>>CAVAuthorizes use case for CAV,, scenario 3.

Use case name:

<<Z>> CAVAuthorizes

Participating actor:

CAV

Entry condition:

A request was sent from the activation point for a special zone.

Events flow:

The CAV verifies the activation point authenticity.

The <<Z>> instance authorizes the activation point according to the policies within the ACL.

The CAV activate the special zone, and apply the instructions received.

Exit condition:

The CAV authorises the activation point and the special zone request.

The Carer, in this scenario, is an authorized actor, since it must provide the right credentials

in order to activate the special zone request. This means that it has been authorized by Flourish to

be a carer. The way how IoTsecM depicts it, is placing a Z over its head to indicate that it requires to

be an authorized actor.

The next scenario regarded is related to the unplanned incident management, in this case,

with the previously presented security use cases is enough to ensure this scenario. The CAV needs

to be an authorized actor, the RSU holds a <<Z>> authorizes module in order to guarantee that the

CAV sending data is included in the ACL. The use case diagram for this scenario is shown in Fig. 46.

132 Chapter 5 Application of IoTsecM profile and results discussion

Fig. 46 NRE unplanned incident management scenario use case diagram.

The next scenario is depicted in theFig. 47 involves the NRE and Network AI unit assets, the

security countermeasures for the RSU and CAVs have been already introduced. Therefore, only the

countermeasures for the NRE and Network AI unit are presented.

Fig. 47 Parking advisory scenario use case diagram.

133 Chapter 5 Application of IoTsecM profile and results discussion

Table 25 <<N>>NREAuthenticates use case for NRE, scenario 4.

Use case name:

<<N>> NREAuthenticates

Participating actor:

NRE

Entry condition:

An entry package is sent from the CAV passing through the RSU.

Events flow:

The package is received.

The NRE actor runs its authentication element.

The <<N>> element obtains the control node credentials from the package.

The <<N>> stereotype instance creates complementary information from de credentials

The <<N>> stereotype instance runs the authentication function.

The <<N>> creates the assertion {True, False}.

This use case extends the Forward OD information use case.

Exit condition:

The CAVs authenticate the package received

Table 26 <<BM>>implements an IPS use case for CAV, scenario 4.

Use case name:

<<BM>> implements an IPS

Participating actor:

CAV

Entry condition:

Receive OD information package data.

IPS preconfigured.

Events flow:

The NRE calls the <<BM>> implements an IPS.

According to the intrusion detected the IPS reacts.

The IPS upgrade the policies in the <<Z>> element.

134 Chapter 5 Application of IoTsecM profile and results discussion

The <<BM>> implements an IPS use case extends the Forward OD information use case

Exit condition:

The <<BM>> instance is running rightly.

The IPS is monitoring.

The analysis of the countermeasures identified allows to know the place where the security

mechanism should be. The use cases diagrams resulted very useful for the requirements

conceptualization, thus the IoTsecM extensions within the use case diagrams could depict each

security countermeasure identified in the attack trees.

The next step is to propose the whole system architecture, here the functional elements and

the non-functional elements are shown in a class diagram. This helps to attend all the issues

concerning to the interconnections between the assets, the identification of their operations and

the relation between the security mechanisms.

The IoTsecM profile includes extension for classes, components and devices metaclasses,

which assist the designing of the system architecture. In Fig. 48 the system architecture regarding

the security elements is depicted. The objective of the IoTsecM profile is to allow the designers to

build, model and depict the security mechanisms together with the functional elements, in this a

complete landscape for the system may be conceptualised and then, the system architecture can

be reached.

135 Chapter 5 Application of IoTsecM profile and results discussion

Fig. 48 Flourish architecture applying the IoTsecM profile.

As it can be seen in the Fig. 48, the security countermeasures identified before are depicted

in the system architecture, the CAV requires a tamper protection and secure storage, besides it

requires a pseudonym. As in the use cases was shown the CAV authenticates, authorizes, encrypt

and decrypt besides it monitors the entry data and the network hence, the <<N>>, <<C>>, <<D>>,

<<BM>> and <<Z>> stereotypes are instanced.

The addition of other security elements such as CA, RA, IM and KM is because of the necessity

of certificated to be issued and the pseudonyms requirements, all this element conform a PKI, or in

the case of the pseudonyms requirement, it is named pseudonym public key infrastructure (PPKI).

The RSU must contain the security countermeasures found. Therefore, the stereotypes

instanced associated to the RSU are <<N>>, <<C>>, <<D>>, <<BM>> and <<Z>>, besides as well as

the CAV the PPKI infrastructure is supported by the RSU. A tamper protection is placed as a

requirement.

The processing nodes are the Control Node, the NRE and the Control Room. The security

mechanisms for these processing nodes are modelled contained in a central station, the central

station contains the stereotype instances <<N>>, <<C>>, <<D>>, <<BM>> and <<Z>>.

136 Chapter 5 Application of IoTsecM profile and results discussion

The IoTsecM proposal allowed to depict the security concerns applying the stereotypes

described before. Once threat analysis was performance, the countermeasures were identified and

depicted with the functional requirements in use case diagrams and class diagrams. The UML

notation provided a better understanding of where the security countermeasures needs to be

placed, which actor is associated to them and how they are related to other system assets. This

architectural view may be extended with behavioral diagrams where the use cases and objects

actions are depicted in order to observe the processes followed by them, besides of their

interaction.

5.2 IOTSECM DESIGNING SECURITY IN AN MHEALTH APPLICATION

The IoT can be characterised by interworking networks which incorporate physical objects. These

objects have virtual representations and are capturing data corresponding to real physical

characteristics obtained and observed by sensors. There can be many relationships between the

things in an IoT systems, even without human interaction. The IoT uses the current Internet as a

communication medium, besides the IoT environment may involve other domains, for instance in

many IoT systems a mobile Application (mApp) or web Application (webApp) allows the user to

communicate with the physical entity through a smart phone app. Therefore, the IoT and mApps

may coexist within a particular system.

The IoTsecM approach allows the depicting and modelling of the security concerns from the

analysis stage within a waterfall development life cycle. In this process the security requirements

are depicted together with the functional requirements in order to improve the conceptualisation

of the system security requirements, the relationship with the system assets and the possible issues

of adding security mechanisms. The consideration of security requirements into the analysis stage

eventually will change the system architecture, since the aggregation of security may add costs in

the designing stage, but it also may decrease the security response costs in case of a security

incident.

137 Chapter 5 Application of IoTsecM profile and results discussion

The study case regarded for this section is named Dentify.me app, it is part of the mHealth

domain. The mHealth domain is one of the emerging healthcare delivery models of eHealth which

utilises recent technologies in the delivery of health treatment to enhance collaboration,

communication and coordination in the health sector. Therefore, mHealth supports health by

incorporating mobile devices into the healthcare delivery model; mHealth involves the use of many

services and utilities supported by a mobile phone device such as. Consequently, mHealth as an

application of IoT systems is expected to grow in the next years, this will have a massive impact on

the way healthcare is delivered in our modern world as it enables affordable personal management

of the user’s well-being. The analysis and design of the IoT system related to mHealth must consider

the security requirements, since the information that mHealth collects is very sensitive and it would

imply a huge risk if it falls in the wrong hands, for example due a security attack.

In particular, mHealth has played an important role in emergency aid in the event of a disaster

where it enables victims to record personal medical information. This, has facilitated the rescue

team to give the victim the right treatment based on informed-decisions. Therefore, mHealth

implies privacy concerns for the users, since the information collected is related to medical data

which are confidential, and they can be very dangerous on the wrong hands.

Tipically, mHealth systems use GPS as a vital asset to detect the disaster’s location in global

disaster responses. With the aid of GPS the rescue team can locate the victims in some cases almost

in real time, this makes the rescue faster, easier and more accurate.

The study case regarded for this section is named Dentify.me app, which is a mHealth app

that helps to recue living victims, find the missing ones, and identify the found victims in natural

disasters or in horrifying mass fatality incidents. The victims need to be located or reported to be

provided with first-aid paramedic services. All the victims need to be identified and listed in order

that all Disaster Victim Identification (DVI) efforts can be best exploited to find the missing victims.

The deceased victims need to be identified. Rescue teams rely on victims or eyewitnesses to report

incidents manually or on post-active systems for receiving emergency calls.

Dentify.me App proposes a victim-centred solution that automates the process of requesting

S.O.S. and locating victims, generating missing persons list and collecting and delivering pre-disaster

data. They use semi-structured interviews in order to identify and gain good understanding of the

138 Chapter 5 Application of IoTsecM profile and results discussion

pre-incident and post-incident data needs, the teams involved, information shared and information

security needs and challenges. Dentify.me App engages with eyewitnesses to automate the incident

detection and identification process. Dentify.me App uses hard systems methodology to

automatically identify and locate potentially affected victims, alert the rescue team to reach out for

the people alive, generate a list of missing ones, and collect and deliver pre-incident data to the DVI

team.

The Dentify.Me App team fully designed, implemented and tested the proposed mobile

health solution, nevertheless the security analysis for the system integrity, confidentiality and

availability was not realized. Therefore, a well-motivated attacker may be colluded with malicious

people to injure or even kill people; the informatics attacker may attack the system infrastructure

and assets, provoking the system to do not respond or respond incorrectly. It would be even more

catastrophic since the rescue teams would not be able to react at the right time and in the right way

and as a consequence would be deader and injured people. The security analysis must be done, in

particular, in systems related to eHealth and in particular in mHealt systems.

In this work, the security analysis of Dentify.Me App was done, and the process followed is

the same as the presented in the last section. The process followed to perform the threat modelling

and security countermeasures analysis and design is based on [49]; however, this process was

customised and extended in order to add the countermeasures modelling, the process

followed is summarised into the next steps:

 Identify the assets

 Create an IoT system architecture overview

 Decompose the IoT system

 Identify threats

 Document threats

 Propose counter-measures for each threat

 Propose a system architecture depicting security countermeasures

First, a clearer idea of the system is needed. As it was mentioned earlier, the study case is the

Dentify.me App which has been already designed, nevertheless the security requirements had not

been regarded, so the security analysis needs to be performed. As it was mentioned in the steps

139 Chapter 5 Application of IoTsecM profile and results discussion

introduced before, the assets identification within the system offers an understanding of what

needs to be protected, it may include: people, hardware, software, procedures, data information,

etc. It is an inventory of all the items (virtual or physical) that are important for the system or for

the organisations and can be of the attacker’s interest. In the Dentify.me App an assets classification

is provided in order to identify the assets according to its particular type:

 People

 Eyewitness

 Injured and Missing victims

 Rescue team

 DVI team

 Hardware

 Mobile

 Wearable devices

 Desktop

 Printer

 Device for recognition

 Switch

 Router

 Cable for connection

 Software

 Firewall software

 Operating system software, Network operating system

 Procedure

 User registration in app

 Basic information from all users

 Identification and location of victims

 List of potential missing people

 Request a response from every victim on that list

 Starts timing and generates four sub-lists:

o Sub-list: Alive and Well Victims

o Sub-list: Alive and injured Victims

o The list shared with the rescue team

140 Chapter 5 Application of IoTsecM profile and results discussion

o Sub-list: Pending Confirmation

o The list shared with DVI team

o Create list for missing people sub-list

 App allow the victim to trigger S.O.S request

 Rescue team is able to access Affected Victims List

 Data/Information

 Basic information from all user

 Data (Pictures/Video/Notes)

 Information

 Networking

 Server

 Host

 Clients

Once the assets are identified they are placed together in an architectural view in

order to observe their associations; the Dentify.me App architecture can be find in [73]. The

class diagram is used as a conceptual diagram in order to show how the assets are located

within the system and to observe how they are associated. In Fig. 49 the architectural view

is shown.

141 Chapter 5 Application of IoTsecM profile and results discussion

Fig. 49 Dentify.Me App architectural view.

At this point the system architecture was depicted and analysed, the assets identification was

done, and hence it is time to analyse the security requirements. As it was mentioned the attack

trees are an orderly and sequential way of describing the sub-attacks to compromise a system, they

are a useful tool to conceptualise and visualise the possible attacks, where the designer must put

himself in the attacker's shoes to devise all the different ways in how an asset can be compromised.

This analysis results in the underlying root causes of attacks, allowing to create attacker profiles, in

order to make decisions about the possible mechanisms and security controls needed to protect the

system from some attack profiles and thus reducing the attack surface.

Building an attack tree is not an easy job since it must consider, as far as possible, the entire

attack surface. It is recommendable to do it within a work group where at least two people can build

it together. The tool used for this purpose is the same that in the previous study case, the tool we

are using is named SecureItree, an attack tree modelling tool built by the Canadian company

Amenaza (the Spanish word for threat)) In this tool the root node represents the end objective and

the children nodes depict the different sub attacks in order to accomplish the overarching goal. The

nodes can be AND operator, OR operator, or a LEAF. The AND operator means that all of the children

nodes are needed to accomplish the parent node. On the other hand, the OR operator means that

any of the children nodes satisfy the parent node.

142 Chapter 5 Application of IoTsecM profile and results discussion

The first attack tree to analyse is the one with the parent node “Eyewitness unable to report

Incident” shown in Fig. 50, meaning that the witness is not able to report an incident because some

or some sequence of attacks is being executed by an attacker. The attacks related to social

engineering are particularly difficult to address since they rely on the human mistake, the

countermeasures against that kind of attack is to educate the people to know the possible ways in

how an attacker may achieve their goal, for instance the attackers may provide right credentials,

and hence stronger policies for physicals human access control need to be enforced, nevertheless

that kind of attacks is out of the scope of IoTsecM.

The attacks and sub attacks to the Dentify.me App assets are described in this section;

however, not all the attacks are described, since some of them are not a relevant part of the attack

vector. Therefore, the attacks description provided below involves the relevant attacks

accompanied with the corresponding countermeasure. The nodes that are the offspring of

“Eyewitness unable to report Incident” threat (Fig. 50) are:

 Error in data entry: The sub attacks describe below attempts to provoke an error in the data

entry. To mitigate this attack the sub attacks needs to be mitigated and as a consequence

of that this attack will be mitigated as well.

o Malicious app changes the data

 Download and Install malicious app

 Phishing attack: With malicious links and another technique the

attackers may force the users to install malicious apps in their smart

phone, in this attack those malicious apps provoke data changing

and as a consequence errors in data entries. The countermeasure

against this attack is to have an anti-virus installed within the smart

phone which prevents the malicious apps installation.

 Colluded app: An app is installed which is colluded with other app

that provokes the error in data entry. The countermeasure against

this attack is to encapsulate (sand boxing) the Dentify.Me App, in

order to deny the access to any other app within the smart phone

143 Chapter 5 Application of IoTsecM profile and results discussion

to the Dentify.Me App. Therefore, the countermeasure is an

authorisation process between the smartphone apps.

 Error in the app:

o The app was not loaded

 Malicious App Installed: The malicious app do not let the Dentify.Me App to

load, hence, the eyewitness is unable to report incident. The

countermeasure against this attack is an authorisation process between the

smartphone apps.

 No Internet connection

o Wifi jamming

 False wifi Access Point (AP): The attacker creates a false access point, then

the data sent from the smart phone cannot be received by the

Incident_ReportHandler or it may be modified. This kind of attacks are part

of the MITM attacks. The countermeasure against this attack is to provide

an authentication method between the eyewitness and the

Incident_ReportHandler.

o No mobile data

 No cellular network

 Cellular Network Jammer Attack: This kind of attack is very common to

compromise a wireless environment such as the communication between

the eyewitness and the Incident_ReportHandler, the goal is to drop the

signal to a level where the communication is interrupted. Typically older

wireless area networks are the most vulnerable to the success of this kind

of attack, since current networks are able to adapt to unintentional or

intentional interference. The countermeasure proposed for this attack is an

intrusion prevention system (IPS), since it should be able to detect the

presence of any unauthorised client device.

 Camera Malfunction:

o Malicious App disable the camera

 Download and Install malicious app: These attacks involve the installation

of malicious apps, they were previously described, as well as the

144 Chapter 5 Application of IoTsecM profile and results discussion

countermeasures proposed. The only change is that these attacks attempts

to provoke a camera malfunction.

 Phishing attack

 Colluded Apps

o Break camera

 Mobile battery discharged:

o Malicious app changes the battery level.

 Steal the Eyewitness mobile phone:

o Direct attack to the eyewitness mobile: This is a physical attack; the attacker steals

the eyewitness mobile phone.

 Server does not respond:

o DoS attack to the server: This attack consists in sending many requests to the server,

in order to make it attend just the false and mal formed requests whereas they deny

any other request even the authenticated requests. The countermeasures against

this attack is an intrusion detection system (IDS) or IPS.

Fig. 50 “Eyewitness unable to report Incident” attack tree.

The second threat analysed is the “Rescue Team cannot access affected Victim List" this

means that the rescue team has not access to the affected victim list, it is displayed Fig. 51 and it

considers the next possibilities or sub attacks:

145 Chapter 5 Application of IoTsecM profile and results discussion

 No Internet connection

o False Access Point: A MITM attack is performed by an attacker, the attacker creates

a false access point and therefore is able to receive, modify or block the

communication between the recue team and the affected victim list. The

countermeasure proposed against this attack is the authentication of the rescue

team, and a trusted victim list.

o Wifi jammer: The countermeasure against this attack is an IDS or IPS control.

 Access a false affected Victim List

o Modify, delete, observe the list

 Password force Brute-Attack: The attacker performs an attack against the

server access mechanism by a brute-force attack, this means that according

to a password dictionary the attacker tries each one of the possible

combinations. The countermeasure against this attack is a well-defined

authorisation mechanism and an IPS in the server.

 Social engineering.

 Denial of Service attack: The countermeasure against this attack is an IPS placed in the

server, which is able to monitors the port server.

146 Chapter 5 Application of IoTsecM profile and results discussion

Fig. 51 Rescue Team cannot access affected victim list attack tree.

The next attack tree has as a root node “Communication interception from mobile”, this

means that an attacker aims to eavesdrop the data traffic from the mobile to the server, the attack

tree regarded for this threat is shown in Fig. 52:

 Communication interception from mobile

 Man in the middle (MITM) attack: The attacker performs a MITM attack in order to intercept
the communication, this can be performed in several ways, however the countermeasure
proposed against this attack are authentication and authorisation controls from the mobile
to the servers.

 Back door attack to the server: The attacker identifies a vulnerable service, and perform a
back door attack in order to take control of the server, in this case taking control of the server

147 Chapter 5 Application of IoTsecM profile and results discussion

communications. The countermeasure against this attack is an IPS control in the server and
authentication mechanisms in each service for the mobiles.

Fig. 52 Communication interception from mobile attack tree.

The next attack tree is “Database theft of basic from all users” where an attacker tries to

modify, delete or observe the data base, this would imply an unauthorised access to the DB. The

attack tree is shown in Fig. 53, and deployed:

 Database theft of basic information from all users.

 Unauthorised access to the DB

 Password brute force attack: This is an attack against the server access mechanism by a

brute-force attack, this means that according to a password dictionary the attacker tries

each one of the possible combinations to gain access to the database. The countermeasure

against this attack is a well-defined authorization mechanism and an IPS in the server in

order to identify and react against the malicious behaviour.

 Social engineering.

 SQL injection attack: This attack is performed entering crafted data that provokes the input

to be interpreted as part of SQL query instead of data. The countermeasure against this

attack is the sanitisation and validation that could be part of an authorisation mechanism.

The objective is to ensure that any malicious characters are not passed to a SQL query for

data.

148 Chapter 5 Application of IoTsecM profile and results discussion

Fig. 53 Database theft of basic information from all users attack tree.

The next case considered is “Recognition device does not recognize”, this means that the

mobile camera or any other device dedicated to recognising does not work properly, this could be

because of a mobile malfunction or because of an attack and therefore, the attack tree for that

threat was modelled and depicted in Fig. 54. The countermeasure against the two attacks are

described:

 Wifi jammer: The countermeasure against this attack is an IDS or IPS control. However, as

it was mentioned, the recent Wifi AP contain anti jamming technology, thus, another

recommendation is to do not use old Wifi AP.

 False AP: The countermeasure against this attack is an authentication mechanism in order

to verify the identity of the recognition device.

149 Chapter 5 Application of IoTsecM profile and results discussion

Fig. 54 Recognition device does not recognize attack tree.

The analysis of the “Unauthorised access to router” threat (Fig. 55) is when an attacker

crosses the router because none security mechanism is implemented the children nodes that the

analysis gave as results are:

 Unauthorised access to router

 Old equipment

 Attack software or Hardware vulnerability: The countermeasure against this attack is to place

only current equipment for the Dentify.Me App system.

 None access control mechanism implemented: The countermeasure against this attack is an

authorisation mechanism implemented in the router.

150 Chapter 5 Application of IoTsecM profile and results discussion

Fig. 55 Unauthorised access to router attack tree.

The next attack tree considers the “Unauthorised access to the lists” (Fig. 56), this means that

an attacker will focus his efforts to get in the database server with the aim of modify, observe or

delete the Dentify.Me App. The sub-attacks regarded are:

 Unauthorised access to the lists

o Social engineering

o Get in with right credentials

 Password brute force attack: This attack was already described; however,

the countermeasure against this attack is a blend of an authorisation

mechanism and an IPS control.

 Social engineering.

o Physical penetration

 Social engineering

 Credentials falsification

151 Chapter 5 Application of IoTsecM profile and results discussion

Fig. 56 Unauthorised access to the list attack tree.

The non-repudiation security requirement is a sub-branch of the general availability

requirement. In this case an authorised actor needs to be able to access the resources that he

requests. In the case of Dentify.Me App the name of the attack against this security requirement is

“DVI team cannot access a Pending Confirmation List” the analysis results are shown below (Fig. 57).

The countermeasures against these attacks were described before, hence they are not described in

this section, and only the sub-attacks names are shown:

 DVI cannot access the Pending Confirmation List

 No Internet connection

 False access point

 Wi-Fi jammer

 Logic error programming

 Error in data entry

 DoS attack server

152 Chapter 5 Application of IoTsecM profile and results discussion

Fig. 57 DVI team cannot access pending conformation list attack tree.

Some attacks are solved with user´s good practices; others need to be taken care of during

the programming of the application such as social engineering attacks that are usually accomplished

in 3 ways:

 Persuading the user: In the case of Dentify.me app users, it is when the user downloads a

malicious application that blocks the camera, for instance.

 Get in physically into the servers: With fake credentials or convincing people, are the most

common practices.

 Remote access: With the correct passwords obtained indirectly or directly from users,

programmers, etc.

Therefore, users should be made aware to not install applications that appear malicious. For

example, applications that ask for permissions that are not congruent with the application intended

performance. If this recommendation is followed, then the risk of having an application that blocks

a hardware asset will be greatly reduced assuring the correct functioning of Dentify.Me App,

especially in urgent situations.

153 Chapter 5 Application of IoTsecM profile and results discussion

Another form of attack is phishing where a malicious link is given to download some software.

This can be done through fake emails or web pages that contain them, therefore, users and

members of the DVI team and Rescue team are advised not to download anything out of necessary

and validated applications.

For the case of the Jammers, which are used when the attacker intends to gain time for a

physical attack, e.g., it can be used to deny the opponent the opportunity to communicate in time

in a critical situation. The countermeasure for this attack could be very complex, in the case of

Dentify.Me App it is recommended to have other data outputs, as is usually the case: Mobile and

Wi-Fi data. Since the application will be running in a non-controlled environment, no featured

protocol could be implemented because Access Points would need to know it.

A direct attack on the Eyewitness is very difficult to avoid, since it cannot be predicted,

however, if the witness observes the incident, he or she should act cautiously and calmly, find a safe

place, where they can continue observing, but always keeping his safety at bay as that of others.

The Denial of Service Attack is when an attacker or a group of attackers make many requests

to one service, with the aim of "saturating" the server and keeping it busy by responding to empty

requests, therefore the server is not able to attend any current requests. The countermeasure

proposed against this attack is a behaviour monitor, which is usually an Intrusion Detection System

(IDS) or an Intrusion Protection System (IPS). This element is represented in the class diagram as an

<<BM>> stereotype instance and it is placed in the IncidentReportHandler as it is shown in Fig. 59.

The man in the middle attack (MITM) is where the attacker places himself between two assets

which exchange data, the attacker inspects traffic and finds usernames, passwords, or any data sent

in plain text. This is the reason why the countermeasure against this attack in the Dentify.Me app

study case is to use point to point encryption, in addition to using encrypted network connections

(HTTPS or VPN). Within the Dentify.Me App study case, it was aimed to encrypt the communications

between the mobile device and the server, i. e., between the Eyewitness and the

Incident_ReportHandler, this is represented using two extension elements of IoTSecM: <<C>> and

<<D>> stereotypes.

154 Chapter 5 Application of IoTsecM profile and results discussion

For attacks on the database it is firstly considered a SQL injection (SQLi) attack, where an

attacker can execute malicious SQL statements that control the database of web applications

(Relational Database Management System - RDBMS).

If a SQL vulnerability is exploited an attacker could bypass the web application's

authentication and authorisation mechanism in order to observe, modify or delete content from the

entire database.

According to OWASP [71] avoid SQL flaws is simple: Stop writing dynamic queries prevents

malicious SQL statements from affecting the logic of executed query.

In [71] a set of simple techniques is provided to prevent SQL Injection:

 Use prepared statements

 Use of stored procedures

 Whitelist input validation

 Escaping all user supplied input

 Enforcing least privileges

 Performing whitelist input validation as a secondary defence

For Dentify.Me App it is proposed to follow the recommendations given by OWASP although

as an addition we propose the database encryption, since the requests to the database are not of

an urgent nature, nevertheless the user´s information is very sensitive as well as the lists, therefore

the <<C>> instance is proposed to protect the information confidentiality. The <<C>> stereotype will

be used as a crypto-module by the Potential_Missing_List, Eyewitness and User Account .

The IoTSecM use case for de Dentify.Me App is shown in Fig. 58 where there are six actors:

User, Victim, Eyewitness, Rescue Team, DVI Team and Emergency Contact. According to the analysis

done before, authorisation is required for the Users, Eyewitness, Rescue Team, Emergency Contact

and DVI team, this will protect the system against unauthorised access and as a consequence it will

not allow unauthenticated actor to access to the resources. As it was mentioned earlier, a text box

over the actor’s head within a Z depicts that the actor must be authorised. The Z element normally

155 Chapter 5 Application of IoTsecM profile and results discussion

implies that an N instance is implicit. A secure communication ([SC]) requirement is needed as well,

in order to indicate that the channel between the user and the account management needs to be

secure. SC will protect the information against MITM attacks since the attacker would be able to

observe the communication flow, nevertheless they would not be able to understand them. The use

case diagram is shown in Fig. 58.

Fig. 58 IoTsecM use case diagram for Dentify.Me App.

The IoTSecM class diagram depicts the system architecture where the security classes are

shown, see Fig. 59. Once the threat analysis is done the use case diagram regarding security

requirements was obtained, then the IoTSecM class diagram is proposed, where the security

requirements are depicted with the functional requirements within the same diagram, that fact

makes a better understanding of the security necessities, the costs, and the system reliability. The

<<C>> stereotype instance is used by the AM_FORM class to provide a confidentiality requirement;

156 Chapter 5 Application of IoTsecM profile and results discussion

this same element is utilised by the Potential_Missing_List, Eyewitness and User_Account. The

<<Z>> stereotype instance depicts an authorisation mechanism which provides protection against

the attacks described earlier. The <<Z>> element authorises the Rescue Team to access the victim

information. As it is shown in Fig. 59 the Z element normally requires an authentication mechanism

(N element), which helps to first authenticate the actor, once it is authenticated an assertion is

passed to the Z element and it will verify its access control list (ACL), or any other control

implemented to authorise the actor and guarantee some rights, it is the writing, executing or

reading rights.

157 Chapter 5 Application of IoTsecM profile and results discussion

Fig. 59 IoTsecM class diagram for Dentify.Me App.

158 Chapter 5 Application of IoTsecM profile and results discussion

A <<BM>> stereotype is applied the Incident_ReportHandler, this indicates that an IPS needs

to be designed in the next stage of the development life cycle, those security mechanisms will help

to prevent the DoS attack mainly.

The IoTsecM approach helped to identify and represent the security and functional

requirements in UML/SysML notation. In the Dentify.Me App study case a threat modelling was

followed which enables the assets identification that are the relevant elements for the system

functionality and therefore, for the attackers. Once the assets were identified and the system

architecture was obtained, the threat modelling was considered using attack trees. These attack

trees modelled the sequence of attacks targeted to a threat, the result of such attacks and sub-

attacks are attack vectors which are all the possible ways an attacker can follow to reach the threat.

The IoTsecM functionality is to identify the security requirements in order to mitigate the possible

attacks. Once the countermeasures are identified and proposed the IoTsecM profile allowed the

representation of such countermeasures within the system architecture and the associations.

The security requirements consideration since the analysis stage in both study cases allowed

the representation of the proposed countermeasures which will mitigate the attacks regarded in

the attack tree. The security analysis must be a fundamental process when IoT systems involve

sensitive information, since the consequence of the absence of security mechanisms would imply

huge risks as human lives. Therefore, the IoTsecM represents a very useful tool which help to

understand and consider the IoT system security before it is implemented in physical objects, the

result of such consideration may be more powerful processors in nodes, a refined policies

establishment, data encrypted, IDS or IPS implementation, etc. These security controls and

mechanisms, definitely, change the system architecture, design and deployment, due to the security

mechanisms identified, the companies and developers can save money and lives.

The IoTsecM approach allows the IoT security requirements, and in comparison to the state

of the art, it is specific for IoT, thus, it is considers the IoT actors and environment. IoTsecM depicts

and models the security requirements and it is a UML/SysML extension, hence it is visual and it helps

to the security requirements conceptualization and representation. In comparison with the state of

the art there is not any UML/SysML extension which covers all this aspects. This information is

summarized in Table XXX.

159 Chapter 5 Application of IoTsecM profile and results discussion

Table 27 IoTsecM comparison

Extension or

Language

Specific for IoT System security

model

UML extension or

visual representation

UMLsec [17] NO YES YES

IoT-A [13] YES NO YES

SysML [41] NO NO YES

SysMLsec [33] NO YES YES

UML4IoT [22] YES NO YES

ThingML [74] YES NO NO

FTA-IBM [19] YES NO YES

UML [37] NO NO

IoTsecM YES YES YES

The IoTsecM proposal is well-defined, since it was able to model each one of the

countermeasures found in the study cases, the notation comply with the UML extension rules. In

both study cases IoTsecM verifies its usability since it modelled and depicted the security

requirements, nevertheless, the usability of IoTsecM depends on the designing and modelling team,

since IoTsecM is an approach which encapsulates security knowledge within the IoT environment.

Therefore, the applicability of IoTsecM certainly will help designers to shrink the attack surface,

which is a fundamental fact for IoT systems.

160 Chapter 6 Conclusions and future work

6 CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

The security requirements consideration from the analysis stage must be an essential part for the

IoT systems. The IoT systems handle very sensitive information, hence, the implementation of IoT

systems regardless the security requirements from the analysis stage should be unthinkable. There

was not any tool, modelling language or method to represent the security requirements from the

analysis stage, hence the IoTsecM proposal is able to fill that gap.

The IoTsecM proposal aims at depicting the security requirements within the analysis and

requirements stages in a MBSE approach, in particular in a waterfall development life cycle.

Therefore, the IoTsecM proposal is focused on the representation of the security requirements in a

visual and abstract way within a very well-known modelling language which is the UML and the

SysML. The IoTsecM approach can represent together the security requirements with the functional

requirements.

The security services in an IoT environment are addressed with the IoTsecM nomenclature

which is not modelling language-dependant. On the other hand, it is an abstract representation of

the security services encapsulated in a nomenclature which incorporates fourteen elements in order

to be applied in a visual grammar, or in a modelling language where the notation, constraints and

syntax needs to be defined.

The IoTsecM proposal was designed and applied accordingly to the general objective. The

IoTsecM UML/SysML profile was designed according to the OMG rules and the UML/SysML

exetension mechanisms (stereotypes, constraints and tags). The IoTsecM profile comprises the

IoTsecM nomenclature, which was adapted and defined based on the UML/SysML approaches.

IoTsecM extends the UML/SysML notation and syntax, this allows a better and easier way to

describe security services encapsulated within the nomenclature.

161 Chapter 6 Conclusions and future work

The IoTsecM proposal was tested in two systems, the first one is related to autonomous

vehicles and the second one is related to a mHealth App. In the two study cases the IoTsecM

proposal used a threat modelling process which follows some steps explained in chapter 5, in that

process the IoTsecM proposal helps to represent the security countermeasures obtained, in both

study cases, by attack trees. All the countermeasures regarded were depicted applying the IoTsecM

profile, hence, it was well-defined and well-formed, and it was applied in UML/SysML tools such as

Argo, Papyrus and Ttool. The IoTsecM profile extended the UML notation. In particular the use case,

class, component and device diagrams are the most relevant extended diagrams due to the

emphasis done to improve the security requirements depicting and conceptualisation in the analysis

stage.

The security requirements and countermeasures were depicted together with the functional

requirements in the use case diagram and in the system architecture. Therefore, the IoTsecM

objective was reached successfully, since IoTsecM proposal was able to depict each countermeasure

identified. The hypothesis was corroborated since the IoTsecM proposal helped to the

conceptualisation and depicting of security concerns within the analysis stage in a waterfall

development life-cycle.

6.2 FUTURE WORK

The IoTsecM profile extends the UML/SysML notation, it depends on the UML/SysML metamodel

rules, a future work might be to extend the IoTsecM proposal to a unique metamodel which would

be ruled by OMG and not by UML or SysML, it would be a new modelling language dedicated to the

security concerns within the IoT systems.

Another future work is to model and simulate the security mechanisms identified in state

machine diagrams, this would allow to model the security mechanisms together with the functional

requirements in order to see how they should behave and the impact in latency they would have on

the system, this is the next step. The IoTsecM proposal is placed in the analysis stage, thus a future

work is to extend it to the next stages such as design and implementation. Some tools can be

developed to model the behaviour of security mechanisms, where the interaction between the

IoTsecM actors, the IoTsecM nomenclature and the functional objects could be seen.

162 Chapter 6 Conclusions and future work

The methodology oriented to security within the IoT systems was a first approach, we

identified and proposed some stages, however the methodology needs to be accomplished in order

to incorporate the threat modelling, attack diagrams, attacker modelling, etc. Therefore, a complete

methodology would help to the integration of IoTsecM with other proposals such as methods,

processes, etc., in order to guarantee the constant reviewing of the security concerns in IoT systems.

The methodology should consider stages from the security requirements obtaining, until the

implementation. Such methodology must consider penetration tests to the deployed system, in

order to feed back the system with new security requirements. Once new security requirements

appear the IoTSecM proposal can be applied as well, however the procedures and methods to

propose the new security requirements is needed, where the peculiarities of IoT systems can be

addressed.

There are three well identified activities that can be performed as future work in the IoTsecM

context: the modelling language generation, the extension of IoTsecM to the design stage and a

whole methodology oriented to the IoT systems security. Those future works would imply the state

of the art reviewing about the known methodologies oriented to security, current modelling

languages, etc. The understanding and application of OMG and MOF rules for the modelling

language proposal. For the IoTsecM extension to cover the design stage, a reviewing of that stage

would be needed in order to be able to propose new UML/SysML extensions to the IoTsecM

elements already proposed.

6.3 RESEARCH OUTPUTS

 Article in MTYmex EAI Conference (D.A Robles-Ramirez, P.J. Escamilla-Ambrosio, R.

Acosta-Bermejo, E. Aguirre-Anaya, A. Rodríguez-Mota, J.J Reyes-Torres “Security Oriented

Methodology for Designing Internet of Things Systems”, 2017)

◦ In press.

 Research stay

◦ Application of the UML/SysML extension in a real-life Project (Flourish)

163 Chapter 6 Conclusions and future work

◦ A paper is in writing process with Dr. Theo Tryfonas and the cryptography lab. In

Bristol and for a journal (JCR).

 Article in Morelos IEEE - icmeae conference. (D.A. Robles-Ramirez, P.J. Escamilla Ambrosio,

T. Tryfonas, “IoTsec: UML extension for Internet of things systems security modelling”,

2017)

 Collaboration as principal author in an article proposal for the “Security and

Communication Networks” journal (JCR). “Special Issue on Security and Privacy for Smart,

Connected, and Mobile IoT Devices and Platforms”. This collaboration is with the MIT

doctor.

164 References

REFERENCES

[1] IEEE, “Towards a definition of the Internet of Things (IoT),” pp. 1–86.

[2] B. Morin, N. Harrand, and F. Fleurey, “Model-Based Software Engineering to Tame the IoT

Jungle,” no. 1, 2017.

[3] R. K. Scott J. Shackelford JD, Anjanette Raymond, Rakshana Balakrishnan, Prakhar Dixit,

Julianna Gjonaj, “When Toasters Attack: A Polycentric Approach to Enhancing the Security of

Things,” no. October, pp. 1–54, 2009.

[4] M. M. Hossain, M. Fotouhi, and R. Hasan, “Towards an Analysis of Security Issues, Challenges,

and Open Problems in the Internet of Things,” 2015 IEEE World Congr. Serv., pp. 21–28, 2015.

[5] S. Li, L. Da Xu, and S. Zhao, “The internet of things : a survey,” no. April 2014, pp. 243–259,

2015.

[6] A. De Saint-Exupery, Internet of Things: Challenges and Opportunities, vol. 291, no. 4. 2014.

[7] B. Russell and D. Van Duren, Practical Internet of Things Security. 2016.

[8] “feature-content @ newsroom.cisco.com,” Cisco.Connections counter. The Internet of

everything in motion. [Online]. Available: https://newsroom.cisco.com/feature-

content?articleId=1208342.

[9] Hewlett-Packard, “Internet of Things Research Study 2015 Report,” p. 6, 2015.

[10] A. Salinas, Y. Ben Saied, and D. Level, “Internet of Things Architecture Concepts and Solutions

for Privacy and Security in the Resolution Infrastructure,” no. 257521, 2013.

[11] S. Babar, P. Mahalle, A. Stango, N. Prasad, and R. Prasad, “Proposed security model and

threat taxonomy for the Internet of Things (IoT) BT - 3rd International Conference on

Network Security and Applications, CNSA-2010, July 23, 2010 - July 25, 2010,” vol. 89 CCIS,

pp. 420–429, 2010.

[12] “Industrial Internet Reference Architecture,” pp. 1–101, 2015.

165 References

[13] A. Serbanati et al., “Internet of Things Architecture, Concept and Solutions for Privacy and

Security in the Resolution Infrastructure,” EU Proj. IoT-A, Proj. Rep. D4. 2, no. 257521, 2012.

[14] X. Li, Z. Xuan, and L. Wen, “Research on the architecture of trusted security system based on

the internet of things,” Proc. - 4th Int. Conf. Intell. Comput. Technol. Autom. ICICTA 2011, vol.

2, pp. 1172–1175, 2011.

[15] J. Choi, Y. In, C. Park, S. Seok, H. Seo, and H. Kim, “Secure IoT framework and 2D architecture

for End-To-End security,” J. Supercomput., vol. 2, no. i, pp. 1–15, 2016.

[16] G. Sindre and Æ. A. L. Opdahl, “Eliciting security requirements with misuse cases,” pp. 34–

44, 2005.

[17] J. Jürjens, “UMLsec: Extending UML for secure systems development,” Proc. 5th Int. Conf.

Unified Model. Lang., pp. 412–425, 2002.

[18] J. A. Estefan, “Survey of Model-Based Systems Engineering (MBSE) Methodologies 2 .

Differentiating Methodologies from Processes , Methods , and Lifecycle Models,” 2008.

[19] B. P. Douglass, C. Evangelist, and G. T. Ambassador, “How to Develop the Best Architecture

for IoT,” 2016.

[20] J. Jurjens, “UMLsec: Extending UML for secure systmes development.”

[21] O. M. Group, “OMG Unified Modeling Language TM (OMG UML), Superstructure v.2.3,”

InformatikSpektrum, vol. 21, no. May, p. 758, 2010.

[22] K. Thramboulidis and F. Christoulakis, “UML4IoT???A UML-based approach to exploit IoT in

cyber-physical manufacturing systems,” Comput. Ind., vol. 82, pp. 259–272, 2016.

[23] “Open Mobile Alliance (OMA), Lightweight Machine to Machine Technical Specification,

Candidate Version 1.0, 14 Dec 2015. Available on line:” .

[24] “Internet Protocol for Smart Objects (IPSO) Alliance, IPSO Smart Object Committee, IPSO

SmartObject Guideline.” .

[25] “CoAP, RFC 7252 Conctrained Application Protocol.” [Online]. Available:

http://coap.technology/.

[26] F. Basile, S. Member, P. Chiacchio, S. Member, and D. Gerbasio, “On the Implementation of

166 References

Industrial Automation Systems Based on PLC,” vol. 10, no. 4, pp. 990–1003, 2013.

[27] M. Unis et al., “Internet of Things – Architecture IoT - A Final architectural reference model

for the IoT v3 . 0 Overview of the IoT-A project partners Acronym Full name Alcatel-Lucent

Bell Labs France Telefonica Investigacion y Desarrollo SA University of Surrey,” no. 257521,

2013.

[28] M. Compton et al., “The SSN ontology of the W3C semantic sensor network incubator

group,” J. Web Semant., vol. 17, pp. 25–32, 2012.

[29] J. Jürjens, Secure Systems Development with UML. Springer, 2004.

[30] U. M. L. White, “Analyze system safety using UML within the IBM Rational Rhapsody

environment .,” no. June, 2009.

[31] T. Lodderstedt, D. Basin, and J. Doser, “SecureUML : A UML-Based Modeling Language for

Model-Driven Security.”

[32] R. Matulevi and M. Dumas, “A Comparison of SecureUML and UMLsec for Role-based Access

Control.”

[33] L. Apvrille and Y. Roudier, “SysML-Sec: A SysML Environment for the Design and

Development of Secure Embedded Systems,” Apcosec 2013, pp. 1–8, 2013.

[34] L. Apvrille and Y. Roudier, “SysML-Sec Attack Graphs : Compact Representations for Complex

Attacks.”

[35] “Ttool: an open source kit,” 2017. [Online]. Available: https://ttool.telecom-paristech.fr/.

[36] T. Secur and B. Tutorial, “The SecurItree,” no. August, pp. 1–25, 2006.

[37] O. M. G. Document, N. Normative, A. Normative, M. Consumable, U. M. L. Specification, and

S. Rfp, “OMG Unified Modeling Language TM (OMG UML),” vol. 5, no. March, 2015.

[38] “UML 2.5 Diagrams overview,” 2017. [Online]. Available: http://www.uml-

diagrams.org/uml-25-diagrams.html.

[39] L. Fuentes-Fernández and A. Vallecillo-Moreno, “An Introduction to UML Profiles,” Eur. J.

Informatics Prof., vol. V, no. 2, pp. 6–13, 2004.

[40] O. Aldawud, “UML PROFILE FOR ASPECT-ORIENTED SOFTWARE DEVELOPMENT,” pp. 1–16.

167 References

[41] Omg, “OMG Systems Modeling Language (OMG SysML TM) v.1.2,” Source, no. June, p. 260,

2010.

[42] S. Friedenthal and R. Steiner, “OMG SysML TM Specification • Specification status,” 2009.

[43] J. R. C. Nurse, A. Erola, I. Agrafiotis, M. Goldsmith, and S. Creese, “Smart Insiders: Exploring

the Threat from Insiders Using the Internet-of-Things,” Proc. - 2015 Int. Work. Secur. Internet

Things, SIoT 2015, vol. 2015, no. SIoT, pp. 5–14, 2016.

[44] S. Li and T. Tryfonas, “The Internet of Things : a security point of view,” 2016.

[45] B. R. Leidos, C. Garlati, and D. Lingenfeleter, “Security Guidance for Early Adopters of the

Internet of Things (IoT),” Mob. Work. Gr. Peer Rev. Doc., no. April, 2015.

[46] “OWASP-Top ten IoT vulnerabilities.” [Online]. Available:

https://www.owasp.org/index.php/Top_IoT_Vulnerabilities.

[47] B. Menkus, Introduction to computer security, vol. 11, no. 2. 1992.

[48] B. Menkus, “Understanding the use of passwords,” Comput. Secur., vol. 7, no. 2, pp. 132–

136, 1988.

[49] B. Russell and D. Van Duren, Practical Internet of Things Security. .

[50] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security, privacy and trust in Internet

of Things: The road ahead,” Comput. Networks, vol. 76, pp. 146–164, 2015.

[51] J. Vollbrecht, P. Calhoun, S. Farrell, G. Gross, and D. Spence, “AAA Authorization Framework,

RFC 2904 (Informational),” pp. 1–35, 2000.

[52] D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli, “Proposed NIST

Standard for Role-Based Access Control,” ACM Trans. Inf. Syst. Secur. TISSEC Homepage Arch.

Vol. 4 Issue 3, August 2001, vol. 2002, no. 10, p. 338, 2003.

[53] H. K. Das, “Extending UML to include Security Constraints for Embedded Systems.”

[54] S.-W. Lin et al., “Industrial Internet Reference Architecture,” Ind. Internet Consort., pp. 1–

101, 2015.

[55] H. Jiang, F. Shen, S. Chen, K. Li, and Y. Jeong, “A secure and scalable storage system for

aggregate data in IoT,” Futur. Gener. Comput. Syst., vol. 49, pp. 133–141, 2015.

168 References

[56] I. E. Bagci, S. Raza, and T. Chung, “Combined Secure Storage and Communication for the

Internet of Things A :,” pp. 523–531, 2013.

[57] I. E. Bagci, M. R. Pourmirza, S. Raza, U. Roedig, and T. Voigt, “Codo : Confidential Data Storage

for Wireless Sensor Networks.”

[58] R. Roman, C. Alcaraz, J. Lopez, and N. Sklavos, “Key management systems for sensor

networks in the context of the Internet of Things q,” Comput. Electr. Eng., vol. 37, no. 2, pp.

147–159, 2011.

[59] D. Liu, P. Ning, and R. Li, “Establishing Pairwise Keys in Distributed Sensor Networks,” vol. 8,

no. 1, pp. 41–77, 2005.

[60] “Key management,” 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Key_management.

[61] M. Bishop, Introduction to computer security. Addison-Wesley, 2005.

[62] D. Gambetta, “Can We Trust Trust?,” 2000.

[63] A. Abdul-rahman and S. Hailes, “Supporting Trust in Virtual Communities,” vol. 0, no. c, pp.

1–9, 2000.

[64] F. Bao and I. Chen, “Dynamic Trust Management for Internet of Things Applications,” pp. 1–

6, 2012.

[65] M. Hossain, M. Fotouhi, and R. Hasan, “Towards an Analysis of Security Issues , Challenges ,

and Open Problems in the Internet of Things,” pp. 1–8.

[66] D. Hutchison and J. C. Mitchell, Lecture Notes in Computer Science. .

[67] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas, “AEGIS : Architecture for

Tamper-Evident and Tamper-Resistant Processing,” pp. 160–171.

[68] S. Raza, L. Wallgren, and T. Voigt, “Ad Hoc Networks SVELTE : Real-time intrusion detection

in the Internet of Things,” Ad Hoc Networks, vol. 11, no. 8, pp. 2661–2674, 2013.

[69] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. De, “A survey of intrusion detection in

Internet of Things,” J. Netw. Comput. Appl., vol. 84, no. January, pp. 25–37, 2017.

[70] A. Shostack, Threat modeling. John Wiley & Sons, Inc., 2014.

169 References

[71] “Implementación simplificada del proceso SDL de Microsoft,” 2010.

[72] “Amenaza,” 2017. [Online]. Available: http://www.amenaza.com/index.php.

[73] S. N. Almutawaa, H. M. Alkabani, M. A. Alsmari, N. H. Alashgar, and A. S. Alrajeh, “Dentify.Me

App,” 2017.

[74] N. Harrand and B. Morin, “ThingML : A Language and Code Generation Framework for

Heterogeneous Targets,” 2016.

	1 Introduction
	1.1 Background – The Internet of Things
	1.1.1 IoT definition
	1.1.2 IoT constraints and challenges
	1.1.3 Security in the IoT
	1.1.4 Model Based Systems Engineering and Lifecycle Development models

	1.2 Problem Statement
	1.3 Hypothesis
	1.4 Objectives
	1.4.1 General objective
	1.4.2 Particular objectives

	1.5 Scope of work
	1.6 Contributions
	1.7 Research and development method used
	1.8 Organisation of the thesis

	2 State of the Art
	2.1 IoT modelling
	2.1.1 UML4IoT
	2.1.2 IoT-A
	2.1.3 IoTLite

	2.2 UML/SysML Security extensions
	2.2.1 UMLsec
	2.2.2 Fault Tree Analysis (FTA), IBM
	2.2.3 SecureUML
	2.2.4 SysMLsec
	2.2.5 IoT-A security model

	3 Theoretical Framework
	3.1 Unified Modelling Language
	3.2 UML extension
	3.2.1 UML profile

	3.3 SysML
	3.4 Vulnerabilities, threats, risks and attacks for IoT

	4 IoTsecM: Methodology and research development
	4.1 IoTsecM actors
	4.2 Nomenclature
	4.2.1 Authentication: N
	4.2.2 Authorization: Z
	4.2.3 C: Cipher and D: Decipher
	4.2.4 SS: Secure Storage
	4.2.5 SC: Secure Communication
	4.2.6 KM: Key Management
	4.2.7 T&R: Trust and Reputation
	4.2.8 IM: Identity Management and Ps:Pseudonym
	4.2.9 CA: Certification Authority and RA: Registration Authority
	4.2.10 TP: Tamper Protection
	4.2.11 BM: Behaviour monitor

	5 Application of IoTsecM profile and results discussion
	5.1 Autonomous vehicles
	5.2 IoTsecM designing security in an mHealth application

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future work
	6.3 Research Outputs

	References

